DONATE

Un equip d’investigadors desenvolupa biotransistors capaços d’escoltar petits batecs de vida

Investigadors de l’IBEC i l’ICMAB han desenvolupat una plataforma de transistors biocompatibles, flexibles i econòmics capaços d’enregistrar un electrocardiograma en cèl·lules i microteixits durant períodes llargs de temps.

La plataforma, basada en transistors orgànics de tipus EGOFET, també pot mesurar l’efecte dels fàrmacs en cèl·lules amb batec, com ara els cardiomiòcits, fet que obre la porta a diverses aplicacions, per exemple, de dispositius implantables per millorar la salut.

Bioenginyers de l’IBEC contribueixen a crear un implant per al cor

Un grup de l’Institut de Bioenginyeria de Catalunya (IBEC) amb Daniel Navajas al capdavant ha col·laborat en una operació dissenyada per reparar el teixit cardíac d’un pacient de 70 anys que havia patit un infart. Això ha estat possible gràcies a la creació d’un bioimplant enriquit amb cèl·lules mare. L’operació és fruit del treball conjunt, durant més de deu anys, de científics, metges i enginyers.

Joan Montero and colleagues in Boston suggest a new strategy for melanoma patients

IBEC researcher Joan Montero authors a paper in Nature Communications which uncovers a key adaptation that melanoma cancer cells use to evade current therapies. This finding might allow physicians to use better drug combinations to improve patient outcomes in the future.

Despite significant advances in cancer diagnosis and treatment, most targeted cancer therapies fail to achieve complete tumor regressions or durable remission. Understanding why these treatments are not always efficient has remained a main challenge for researchers and physicians. Now, Joan Montero from the IBEC and colleagues at Dana-Farber Cancer Institute/Harvard Medical School in USA report in Nature Communications a mechanism that uncovers why some therapies fail to treat melanoma.

Un telèfon intel·ligent per detectar l’apnea del son a casa

El grup de Processament i interpretació de senyals biomèdiques de l’Institut de Bioenginyeria de Catalunya (IBEC) ha desenvolupat un sistema que permetrá diagnosticar de manera econòmica, fiable i no invasiva l’apnea obstructiva del son (AOS), un trastorn del son que es caracteritza per el cessament recurrent del fluxe d’aire mentre es dorm. Els investigadors proposen un métode innovador que consisteix en l’anàlisi de senyals acústiques registrades amb un telèfon intel·ligent.

Dormir, com respirar, és una acció que tots duem a terme al llarg de la vida. El son, que representa més del 25 % del nostre temps, és l’estat natural de descans del cos i és un factor important d’autoregulació. Hi ha moltes malalties, però, que poden afectar la qualitat del son i provocar símptomes de diversa gravetat.

Un teléfono inteligente para detectar la apnea del sueño en casa

El grupo de Procesamiento e interpretación de señales biomédicas del Instituto de Bioingeniería de Cataluña (IBEC) ha desarrollado un sistema que permitiría diagnosticar de manera económica, fiable y no invasiva la apnea obstructiva del sueño (AOS), un trastorno del sueño que se caracteriza por el cese recurrente del flujo de aire durante el sueño. Los investigadores proponen un novedoso método consistente en el análisis de señales acústicas registradas con un teléfono inteligente.

Dormir, igual que respirar, es una acción que realizamos a lo largo de nuestras vidas. El sueño, que representa más del 25 % de nuestro tiempo, es el estado natural de descanso del cuerpo y constituye un factor importante para su autorregulación. Sin embargo, existen varias enfermedades que afectan a la calidad del sueño y que pueden producir síntomas de distinta gravedad.

Investigadors duen a terme milers de mutacions per comprendre millor l’esclerosi lateral amiotròfica

Investigadors de l’IBEC i el CRG a Barcelona utilitzen una tècnica denominada ‘mutagènesi d’alt rendiment’ per estudiar l’esclerosi lateral amiotròfica (ELA) i n’obtenen resultats inesperats.

Aquests resultats van demostrar que l’agregació de TDP-43, no només no és perjudicial sinó que, en realitat, protegeix les cèl·lules, fet que canvia el que se sabia sobre l’ELA i obre la porta a enfocaments terapèutics totalment nous.

L’esclerosi lateral amiotròfica (ELA) és una malaltia devastadora i incurable del sistema nerviós que afecta les cèl·lules nervioses del cervell i la medul·la espinal i que provoca pèrdua de control muscular i, habitualment, la mort al cap de pocs anys de ser diagnosticada. En l’ELA, com en altres malalties neurodegeneratives, fa temps que es consideren certs agregats de proteïnes com a trets distintius patològics, tot i que encara no se sap amb claredat la causa real de la malaltia. De fet, la reducció de l’agregació d’aquestes proteïnes no ha tingut èxit com a

L’oli d’oliva ofereix dues poderoses armes en la lluita contra la resistència bacteriana

Investigadors del grup d’Infeccions Bacterianes: Teràpies Antimicrobianes de l’IBEC i de la Universitat de Granada han creat dos potents antimicrobians a partir de l’àcid oleanòlic i l’àcid maslínic, tots dos presents a l’oli d’oliva.

L’estudi, publicat a la revista ACS Infectious Diseases, ha demostrat l’efecte d’aquests derivats sobre el bacteri Staphylococcus aureus, un dels principals causants d’infeccions en catèters i pròtesis hospitalàries
Or líquid. Així és com totes les cultures mediterrànies s’han referit a l’oli d’oliva al llarg de la història. El seu sabor captivador, la seva textura i el seu paper en la gastronomia han estat algunes de les qualitats que hi han contribuït. Però l’oli d’oliva també és un gran aliat quan parlem de salut: des de propietats antiinflamatòries fins beneficis per al sistema cardiovascular, passant per efectes antitumorals recentment descoberts.  
Ara, científics de l’Institut de Bioenginyeria de Catalunya (IBEC) i de la Universitat de Granada (UGR) s’han proposat incrementar les ja conegudes propietats antimicrobianes de l’oli d’oliva. Per a això, han sintetitzat a partir de dos compostos presents en l’oli d’oliva

Investigadors de l’IBEC desenvolupen una plataforma de bioenginyeria que permet detectar molèules pro-inflamatòries presents en desordres musculars

El grup de recerca de Biosensors per a la bioenginyeria liderat per Javier Ramón ha desenvolupat una plataforma de detecció per a la captació in-situ de molècules pro-inflamatòries segregades pels teixits, conegudes com a citoquines. Aquesta nova metodologia obre una porta a la comprensió dels desordres metabòlics presents en les malalties musculars a més a més del desenvolupament d’aplicacions de detecció de drogues.

Tot i que el 40% del total de massa corporal és teixit muscular esquelètic, segons l’Associació Mèdica Estatunidenca, no existeix un perfil mèdic clínic especialitzat en el tractament de malalties musculars. És precisament en aquesta àrea que des de fa uns anys, el grup de recerca del Dr. Javier Ramón a l’IBEC, treballa per omplir l’escletxa entre els trastorns musculars i les teràpies mèdiques específiques.

Els nanovectors podrien millorar l’administració combinada de fàrmacs contra la malària

Nanovector_IBEC

Nanovector_IBECSegons indica l’estudi, l’estratègia té, a més, l’avantatge de reconèixer al gametocist, la fase transmissible del paràsit. Encapsular dos fàrmacs amb propietats diferents en nanovesícules envoltades per anticossos millora notablement la seva especificitat i eficàcia, segons un estudi liderat per Xavier Fernández-Busquets, director de la unitat mixta de Nanomalària de l’Institut de Bioenginyeria de Catalunya (IBEC) i l’Institut de Salut Global de Barcelona (ISGlobal), centre impulsat per ”la Caixa”.

La combinació de dos fàrmacs que difereixen en el seu mecanisme d’acció és la base de les teràpies més reeixides avui dia per tractar la malària. Tot i això, la diferència en propietats fisicoquímiques dels fàrmacs (solubilitat, vida mitjana, etc.) afecta moltes vegades a l’eficàcia del tractament.

Dissenyat un nanodron capaç de detectar gasos tòxics en situacions d’emergència

Investigadors del grup de recerca Processament de senyals i informació per a sistemes de sensors a l’IBEC, dirigit per Santiago Marco, dissenyen un nanodron que podria identificar gasos tòxics en edificis ensorrats per l’efecte de terratrèmols o d’explosions. El nou aparell, que pesa 35 grams, també podria ser útil per detectar la presència de víctimes en espais tancats i de difícil accés.

Detectar gasos perillosos en edificis esfondrats per terratrèmols o explosions i, fins i tot, identificar la presència de possibles víctimes en llocs difícilment accessibles són alguns escenaris d’acció de l’smelling nanoaerial vehicle (SNAV), un nanodron que han dissenyat i desenvolupat els investigadors Santiago Marco i Javier Burgués, de la Facultat de Física de la Universitat de Barcelona i de l’Institut de Bioenginyeria de Catalunya (IBEC).