DONATE

New biodegradable nanomotors for biomedical applications

A paper published in Nano Letters describes the engineering and functionality of a biocompatible and biodegradable nanomotor. This hybrid structure, which is composed of an organic exterior, propels itself using inorganic nanoparticles acting as an engine that the researchers have synthesized inside the nanomotor.

The research was led by Jan van Hest and Laoi Abdelmohsen from the Institute of Complex Molecular Systems at TU/e in collaboration with Samuel Sánchez from the Institute for Bioengineering of Catalonia (IBEC) in Barcelona, as well as researchers based in China and the UK.

Artificial Intelligence tools to advance in the research and development of biomaterials

Experts in bioengineering and informatics, including IBEC´s Associated Researcher Maria-Pau Ginebra, have published a paper where the researchers propose the creation of tools based on Artificial Intelligence for the development of biomaterials in Nature Reviews Materials.

Nature Reviews Materials journal has published an article signed by scientists from the Barcelona Supercomputing Center (BSC), the Universitat Politècnica de Catalunya (UPC) and the Institute for Bioengineering of Catalonia (IBEC) outlining the great possibilities that artificial intelligence offers towards the progress in the design and development of biomaterials.

Bioengineering against the most resistant and deadly bacterial infections

An international team, led by Profs Giuseppe Battaglia and Loris Rizzello from the Institute for Bioengineering of Catalonia (IBEC), carried out out a study that opens the door to a new therapy capable of quickly and effectively eliminating infections caused by intracellular bacteria, the most resistant to immune defenses.

This therapy, based on synthetic vesicles, could considerably reduce the dose and duration of antimicrobial treatments, thus reducing the danger of generating resistance to antibiotics of pathogens such as those leading to tuberculosis.

Artificial systems imitate how cells move and communicate

A review published in the scientific journal Small elegantly summarises the most important cellular biomimicry research of the past few years on synthetic soft-architectures, with a view to inspiring future developments in the field.

Samuel Sánchez, Group Leader at the Institute for Bioengineering of Catalonia (IBEC) co-authored this piece, alongside world-renowned experts in bioengineering and cell synthesis.

Nanoparticles and supercomputers against SARS-CoV-2

The research group at the UPC, led by the IBEC Associated Researcher Carlos Aleman, will investigate in collaboration with the company B. Braun, the detection, blocking and elimination of the SARS-CoV-2 virus by using functionalized nanoparticles and activation of nano-sources of heat.

To carry out the investigation, they will be allowed to use the supercomputer installed in France.

How can we measure mechanical stress in living tissues?

A team of experts from the Institute for Bioengineering of Catalonia (IBEC) has published a review in the journal Nature Reviews Physics detailing the different techniques used to calculate mechanical stress in tissues, both in cell cultures and in vivo. Determining these mechanisms of mechanical stress is crucial to study processes linked to morphogenesis, homeostasis, and diseases such as cancer.

In order to work properly, living tissues need to continuously move, divide, reshape and perceive their microenvironment. In other words, they need to withstand certain mechanical stress derived from contact.

New chemical lego blocks for health solutions

IBEC researchers develop new multi-responsive molecules able to self-assemble in water forming fiber-like structures. The so-called discotic molecules show responsiveness to temperature, light, pH, and ionic strength and they might show great potential for medical applications such as drug delivery systems, diagnosis or tissue engineering.

Edgar Fuentes is a PhD student in the Nanoscopy for Nanomedicine Group led by Lorenzo Albertazzi at the Institute for Bioengineering of Catalonia (IBEC). Within this group, Edgar and his colleagues focus on the synthesis of novel smart supramolecular materials for drug delivery.

IBEC researchers find a new way to effectively transport drugs to the brain

An international group of researchers from the University of Maryland (United States) and the Institute for Bioengineering of Catalonia (IBEC) led by ICREA Research Professor Silvia Muro, has identified a new way of transporting drugs to the brain, one of the major challenges of the pharmaceutical science today, that could help to come up with new treatments for neurological diseases such as Parkinson’s or Alzheimer’s.

To find this out, the experts linked an antibody capable of recognizing the ICAM-1 protein -a molecule expressed on the surface of blood vessels- to a series of polymeric nanoparticles that can transport drugs and inject them intravenously.

IBEC researchers explain “Durotaxis”, a cell migration mechanism with a potential role in several diseases

Xavier Trepat, group leader of the “Integrative cell and tissue dynamics” at IBEC together with Raimon Sunyer, Senior researcher in Trepat’s lab, have written a Primer in Current Biology magazine on “Durotaxis”, a cell migration mechanism that might have a role in several disease states that include the stiffening of tissues.

Embryo development, tumour progression or the immune response against pathogens requires cell migration.

A low-cost ventilator for areas with limited means

A project led by the University of Barcelona to which IBEC Group Leader Daniel Navajas has contributed has created a non-invasive low-cost ventilator to support patients with respiratory diseases in areas with limited means.

Non-invasive ventilators are usually used to treat patients with respiratory failure: for example, those with severe complications due to COVID-19.