Publications

Year 2009


By year:[ 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Aparicio, C., Salvagni, E., Werner, M., Engel, E., Pegueroles, M., Rodriguez-Cabello, C., Munoz, F., Planell, J. A., Gil, J., (2009). Biomimetic treatments on dental implants for immediate loading applications Journal of Medical Devices 3, (2), 027555

Summary form only given. Commercially pure titanium (cp Ti) dental implants have been widely and successfully used with high rates of clinical success in normal situations. However, there is still a lack of reliable synthetic materials to be used either a) when immediate loading of the implant is desired or b) when bone presents compromised conditions due to trauma, infection, systemic disease and/or lack of significant bone volume. Our group has aimed the development of biomimetic strategies of surface modification to obtain metallic implants with osteostimulative capabilities. These surface modifications will provide implants with a rapid rate of newly-formed bone growth and with ossecoalescence, i.e., direct chemical contact with the surrounding tissues. Consequently, the biomimetically-modified implants will be reliably used on those more demanding clinical situations, cp Ti surfaces treated to obtain a combination of an optimal random surface topography (in the micro and nanolevels) with a chemical modification of the naturally-formed titania layer have been proved bioactive. These rough and bioactive surfaces nucleate and grow a homogeneous hydroxyapatite layer both in vitro and in vivo. They stimulate the osteoblasts differentiation and trigger a rapid bone formation that mechanically fixes implants under immediate-loading conditions. A simple process using silane chemistry has been proved specific, rapid, and reliable to covalently immobilize biomolecules on cp Ti surfaces. This methodology can be used to develop biofunc- tionalized implant surfaces with different or combined bioactivities. The biofunctional molecules can be biopolymers, proteins, growth factors, and synthetic peptides specifically designed to be attached to the surface. The bioactive properties of the molecules designed and used can be mineral growing and nucleation, osteoblast differentiation (bone regeneration), fibroblasts differentiation (biological sealing), antibiotic,... Specifically, we have obtained mechanically and thermochemically stable coatings made of recombinant elastin-like biopolymers. The biopolymers bear either a) the RODS peptide, which is a highly-specific cell-adhesion motif present in proteins of the extracellular matrix for different tissues including bone, or b) an acidic peptide sequence derived from statherin, a protein present in saliva with high affinity for calcium-phosphates and with a leading role in the remineralization processes of the hard tissues forming our teeth. Two different biomimetic strategies have been successfully developed combining topographical modification, inorganic treatments and/or biofunctionalization for improving bioactive integrative properties of cp Ti implants.

Keywords: Biomedical materials, Bone, Cellular biophysics, Dentistry, Molecular biophysics, Prosthetics, Proteins, Surface treatment, Titanium


Trepat, X., Wasserman, M. R., Angelini, T. E., Millet, E., Weitz, D. A., Butler, J. P., Fredberg, J. J., (2009). Physical forces during collective cell migration Nature Physics 5, (6), 426-430

Fundamental biological processes including morphogenesis, tissue repair and tumour metastasis require collective cell motions(1-3), and to drive these motions cells exert traction forces on their surroundings(4). Current understanding emphasizes that these traction forces arise mainly in 'leader cells' at the front edge of the advancing cell sheet(5-9). Our data are contrary to that assumption and show for the first time by direct measurement that traction forces driving collective cell migration arise predominately many cell rows behind the leading front edge and extend across enormous distances. Traction fluctuations are anomalous, moreover, exhibiting broad non-Gaussian distributions characterized by exponential tails(10-12). Taken together, these unexpected findings demonstrate that although the leader cell may have a pivotal role in local cell guidance, physical forces that it generates are but a small part of a global tug-of-war involving cells well back from the leading edge.

Keywords: Focal adhesions, Granular matter, Bead packs, Morphogenesis, Sheets, Actin, Fluctuations, Fibroblasts, Microscopy, Diversity


Jang, J. H., Castano, O., Kim, H. W., (2009). Electrospun materials as potential platforms for bone tissue engineering Advanced Drug Delivery Reviews 61, (12), 1065-1083

Nanofibrous materials produced by electrospinning processes have attracted considerable interest in tissue regeneration, including bone reconstruction. A range of novel materials and processing tools have been developed to mimic the native bone extracellular matrix for potential applications as tissue engineering scaffolds and ultimately to restore degenerated functions of the bone. Degradable polymers, bioactive inorganics and their nanocomposites/hybrids nanofibers with suitable mechanical properties and bone bioactivity for osteoblasts and progenitor/stem cells have been produced. The surface functionalization with apatite minerals and proteins/peptides as well as drug encapsulation within the nanofibers is a promising strategy for achieving therapeutic functions with nanofibrous materials. Recent attempts to endow a 3D scaffolding technique to the electrospinning regime have shown some promise for engineering 3D tissue constructs. With the improvement in knowledge and techniques of bone-targeted nanofibrous matrices, bone tissue engineering is expected to be realized in the near future.

Keywords: Electrospun nanofiber, Bone tissue engineering, Biomimetic matrix, Bone bioactivity, 3D scaffolding


Fumagalli, L., Ferrari, G., Sampietro, M., Gomila, G., (2009). Quantitative nanoscale dielectric microscopy of single-layer supported biomembranes Nano Letters 9, (4), 1604-1608

We present the experimental demonstration of low-frequency dielectric constant imaging of single-layer supported biomembranes at the nanoscale. The dielectric constant image has been quantitatively reconstructed by combining the thickness and local capacitance obtained using a scanning force microscope equipped with a sub-attofarad low-frequency capacitance detector. This work opens new possibilities for studying bioelectric phenomena and the dielectric properties of biological membranes at the nanoscale.

Keywords: Atomic-force microscopy, Nnear-field microscopy, Purple membrane, Scanning capacitance, Biological-systems, Fluid, Spectroscopy, Resolution, Proteins, Dynamics


Fernàndez-Busquets, X., Körnig, A., Bucior, I., Burger, M. M., Anselmetti, D., (2009). Self-recognition and Ca2+-dependent carbohydrate-carbohydrate cell adhesion provide clues to the cambrian explosion Molecular Biology and Evolution 26, (11), 2551-2561

The Cambrian explosion of life was a relatively short period approximately 540 Ma that marked a generalized acceleration in the evolution of most animal phyla, but the trigger of this key biological event remains elusive. Sponges are the oldest extant Precambrian metazoan phylum and thus a valid model to study factors that could have unleashed the rise of multicellular animals. One such factor is the advent of self-/non-self-recognition systems, which would be evolutionarily beneficial to organisms to prevent germ-cell parasitism or the introduction of deleterious mutations resulting from fusion with genetically different individuals. However, the molecules responsible for allorecognition probably evolved gradually before the Cambrian period, and some other (external) factor remains to be identified as the missing triggering event. Sponge cells associate through calcium-dependent, multivalent carbohydrate-carbohydrate interactions of the g200 glycan found on extracellular proteoglycans. Single molecule force spectroscopy analysis of g200-g200 binding indicates that calcium affects the lifetime (+Ca/-Ca: 680 s/3 s) and bond reaction length (+Ca/-Ca: 3.47 /2.27). Calculation of mean g200 dissociation times in low and high calcium within the theoretical framework of a cooperative binding model indicates the nonlinear and divergent characteristics leading to either disaggregated cells or stable multicellular assemblies, respectively. This fundamental phenomenon can explain a switch from weak to strong adhesion between primitive metazoan cells caused by the well-documented rise in ocean calcium levels at the end of Precambrian time. We propose that stronger cell adhesion allowed the integrity of genetically uniform animals composed only of "self" cells, facilitating genetic constitutions to remain within the metazoan individual and be passed down inheritance lines. The Cambrian explosion might have been triggered by the coincidence in time of primitive animals endowed with self-/non-self-recognition and of a surge in seawater calcium that increased the binding forces between their calcium-dependent cell adhesion molecules.

Keywords: Calcium, Cambrian explosion, Carbohydrates, Cell adhesion, Origin of Metazoa, Sponges


Banos, R. C., Vivero, A., Aznar, S., Garcia, J., Pons, M., Madrid, C., Juarez, A., (2009). Differential regulation of horizontally acquired and core genome genes by the bacterial modulator H-NS PLoS Genetics 5, (6), 8

Horizontal acquisition of DNA by bacteria dramatically increases genetic diversity and hence successful bacterial colonization of several niches, including the human host. A relevant issue is how this newly acquired DNA interacts and integrates in the regulatory networks of the bacterial cell. The global modulator H-NS targets both core genome and HGT genes and silences gene expression in response to external stimuli such as osmolarity and temperature. Here we provide evidence that H-NS discriminates and differentially modulates core and HGT DNA. As an example of this, plasmid R27-encoded H-NS protein has evolved to selectively silence HGT genes and does not interfere with core genome regulation. In turn, differential regulation of both gene lineages by resident chromosomal H-NS requires a helper protein: the Hha protein. Tight silencing of HGT DNA is accomplished by H-NS-Hha complexes. In contrast, core genes are modulated by H-NS homoligomers. Remarkably, the presence of Hha-like proteins is restricted to the Enterobacteriaceae. In addition, conjugative plasmids encoding H-NS variants have hitherto been isolated only from members of the family. Thus, the H-NS system in enteric bacteria presents unique evolutionary features. The capacity to selectively discriminate between core and HGT DNA may help to maintain horizontally transmitted DNA in silent form and may give these bacteria a competitive advantage in adapting to new environments, including host colonization.

Keywords: 2A strain 2457T, Escherichia-Coli, Salmonella-Enterica, Protein, DNA, Expression, Binding, HHA, Shigella, Plasmid


Guix, F. X., Ill-Raga, G., Bravo, R., Nakaya, T., de Fabritiis, G., Coma, M., Miscione, G. P., Villa-Freixa, J., Suzuki, T., Fernàndez-Busquets, X., Valverde, M. A., de Strooper, B., Munoz, F. J., (2009). Amyloid-dependent triosephosphate isomerase nitrotyrosination induces glycation and tau fibrillation Brain 132, (5), 1335-1345

Alzheimer's disease neuropathology is characterized by neuronal death, amyloid beta-peptide deposits and neurofibrillary tangles composed of paired helical filaments of tau protein. Although crucial for our understanding of the pathogenesis of Alzheimer's disease, the molecular mechanisms linking amyloid beta-peptide and paired helical filaments remain unknown. Here, we show that amyloid beta-peptide-induced nitro-oxidative damage promotes the nitrotyrosination of the glycolytic enzyme triosephosphate isomerase in human neuroblastoma cells. Consequently, nitro-triosephosphate isomerase was found to be present in brain slides from double transgenic mice overexpressing human amyloid precursor protein and presenilin 1, and in Alzheimer's disease patients. Higher levels of nitro-triosephosphate isomerase (P < 0.05) were detected, by Western blot, in immunoprecipitates from hippocampus (9 individuals) and frontal cortex (13 individuals) of Alzheimer's disease patients, compared with healthy subjects (4 and 9 individuals, respectively). Triosephosphate isomerase nitrotyrosination decreases the glycolytic flow. Moreover, during its isomerase activity, it triggers the production of the highly neurotoxic methylglyoxal (n = 4; P < 0.05). The bioinformatics simulation of the nitration of tyrosines 164 and 208, close to the catalytic centre, fits with a reduced isomerase activity. Human embryonic kidney (HEK) cells overexpressing double mutant triosephosphate isomerase (Tyr164 and 208 by Phe164 and 208) showed high methylglyoxal production. This finding correlates with the widespread glycation immunostaining in Alzheimer's disease cortex and hippocampus from double transgenic mice overexpressing amyloid precursor protein and presenilin 1. Furthermore, nitro-triosephosphate isomerase formed large beta-sheet aggregates in vitro and in vivo, as demonstrated by turbidometric analysis and electron microscopy. Transmission electron microscopy (TEM) and atomic force microscopy studies have demonstrated that nitro-triosephosphate isomerase binds tau monomers and induces tau aggregation to form paired helical filaments, the characteristic intracellular hallmark of Alzheimer's disease brains. Our results link oxidative stress, the main etiopathogenic mechanism in sporadic Alzheimer's disease, via the production of peroxynitrite and nitrotyrosination of triosephosphate isomerase, to amyloid beta-peptide-induced toxicity and tau pathology.

Keywords: Alzheimer's disease, Amyloid β-peptide, Tau protein, Triosephosphate isomerase, Peroxynitrite


Roca-Cusachs, P., Gauthier, N. C., del Rio, A., Sheetz, M. P., (2009). Clustering of alpha(5)beta(1) integrins determines adhesion strength whereas alpha(v)beta(3) and talin enable mechanotransduction Proceedings of the National Academy of Sciences of the United States of America 106, (38), 16245-16250

A key molecular link between cells and the extracellular matrix is the binding between fibronectin and integrins alpha(5)beta(1) and alpha(v)beta(3). However, the roles of these different integrins in establishing adhesion remain unclear. We tested the adhesion strength of fibronectin-integrin-cytoskeleton linkages by applying physiological nanonewton forces to fibronectin-coated magnetic beads bound to cells. We report that the clustering of fibronectin domains within 40 nm led to integrin alpha(5)beta(1) recruitment, and increased the ability to sustain force by over six-fold. This force was supported by alpha(5)beta(1) integrin clusters. Importantly, we did not detect a role of either integrin alpha(v)beta(3) or talin 1 or 2 in maintaining adhesion strength. Instead, these molecules enabled the connection to the cytoskeleton and reinforcement in response to an applied force. Thus, high matrix forces are primarily supported by clustered alpha(5)beta(1) integrins, while less stable links to alpha(v)beta(3) integrins initiate mechanotransduction, resulting in reinforcement of integrin-cytoskeleton linkages through talin-dependent bonds.

Keywords: Cell-adhesion, Mechanical force, Vinculin-binding, Fibronectin, Activation, Dynamics, Domain, Alpha-v-beta-3, Translocation, Bonds


Carulla, N., Zhou, M., Arimon, M., Gairi, M., Giralt, E., Robinson, C. V., Dobson, C. M., (2009). Experimental characterization of disordered and ordered aggregates populated during the process of amyloid fibril formation Proceedings of the National Academy of Sciences of the United States of America 106, (19), 7828-7833

Recent experimental evidence points to intermediates populated during the process of amyloid fibril formation as the toxic moieties primarily responsible for the development of increasingly common disorders such as Alzheimer's disease and type II diabetes. We describe here the application of a pulse-labeling hydrogendeuterium (HD) exchange strategy monitored by mass spectrometry (MS) and NMR spectroscopy (NMR) to characterize the aggregation process of an SH3 domain under 2 different conditions, both of which ultimately lead to well-defined amyloid fibrils. Under one condition, the intermediates appear to be largely amorphous in nature, whereas under the other condition protofibrillar species are clearly evident. Under the conditions favoring amorphous-like intermediates, only species having no protection against HD exchange can be detected in addition to the mature fibrils that show a high degree of protection. By contrast, under the conditions favoring protofibrillar-like intermediates, MS reveals that multiple species are present with different degrees of HD exchange protection, indicating that aggregation occurs initially through relatively disordered species that subsequently evolve to form ordered aggregates that eventually lead to amyloid fibrils. Further analysis using NMR provides residue-specific information on the structural reorganizations that take place during aggregation, as well as on the time scales by which they occur.

Keywords: Aggregation, HD exchange, Misfolding intermediates, PI3-SH3


van Zanten, T. S., Cambi, A., Koopman, M., Joosten, B., Figdor, Carl G., Garcia-Parajo, M. F., (2009). Hotspots of GPI-anchored proteins and integrin nanoclusters function as nucleation sites for cell adhesion Proceedings of the National Academy of Sciences of the United States of America 106, (44), 18557-18562

Recruitment of receptor proteins to lipid rafts has been proposed as an important mechanism to regulate their cellular function. In particular, rafts have been implicated in regulation of integrin-mediated cell adhesion, although the underlying mechanism remains elusive. We used single-molecule near-field optical microscopy (NSOM) with localization accuracy of approximately 3 nm, to capture the spatio-functional relationship between the integrin LFA-1 and raft components (GPI-APs) on immune cells. Dual color nanoscale imaging revealed the existence of a nanodomain GPI-AP subpopulation that further concentrated in regions smaller than 250 nm, suggesting a hierarchical prearrangement of GPI-APs on resting monocytes. We previously demonstrated that in quiescent monocytes, LFA-1 preorganizes in nanoclusters. We now show that integrin nanoclusters are spatially different but reside proximal to GPI-AP nanodomains, forming hotspots on the cell surface. Ligand-mediated integrin activation resulted in an interconversion from monomers to nanodomains of GPI-APs and the generation of nascent adhesion sites where integrin and GPI-APs colocalized at the nanoscale. Cholesterol depletion significantly affected the reciprocal distribution pattern of LFA-1 and GPI-APs in the resting state, and LFA-1 adhesion to its ligand. As such, our data demonstrate the existence of nanoplatforms as essential intermediates in nascent cell adhesion. Since raft association with a variety of membrane proteins other than LFA-1 has been documented, we propose that hotspots regions enriched with raft components and functional receptors may constitute a prototype of nanoscale inter-receptor assembly and correspond to a generic mechanism to offer cells with privileged areas for rapid cellular function and responses to the outside world.

Keywords: Integrin LFA-1, Membrane nanocompartments, Near-field scanning optical microscopy (NSOM), Single molecule detection


Zhou, E. H., Trepat, X., Park, C. Y., Lenormand, G., Oliver, M. N., Mijailovich, S. M., Hardin, C., Weitz, D. A., Butler, J. P., Fredberg, J. J., (2009). Universal behavior of the osmotically compressed cell and its analogy to the colloidal glass transition Proceedings of the National Academy of Sciences of the United States of America 106, (26), 10632-10637

Mechanical robustness of the cell under different modes of stress and deformation is essential to its survival and function. Under tension, mechanical rigidity is provided by the cytoskeletal network; with increasing stress, this network stiffens, providing increased resistance to deformation. However, a cell must also resist compression, which will inevitably occur whenever cell volume is decreased during such biologically important processes as anhydrobiosis and apoptosis. Under compression, individual filaments can buckle, thereby reducing the stiffness and weakening the cytoskeletal network. However, the intracellular space is crowded with macromolecules and organelles that can resist compression. A simple picture describing their behavior is that of colloidal particles; colloids exhibit a sharp increase in viscosity with increasing volume fraction, ultimately undergoing a glass transition and becoming a solid. We investigate the consequences of these 2 competing effects and show that as a cell is compressed by hyperosmotic stress it becomes progressively more rigid. Although this stiffening behavior depends somewhat on cell type, starting conditions, molecular motors, and cytoskeletal contributions, its dependence on solid volume fraction is exponential in every instance. This universal behavior suggests that compression-induced weakening of the network is overwhelmed by crowding-induced stiffening of the cytoplasm. We also show that compression dramatically slows intracellular relaxation processes. The increase in stiffness, combined with the slowing of relaxation processes, is reminiscent of a glass transition of colloidal suspensions, but only when comprised of deformable particles. Our work provides a means to probe the physical nature of the cytoplasm under compression, and leads to results that are universal across cell type.

Keywords: Compression, Cytoplasm, Cytoskeleton, Mechanotransduction, Stiffness


Nicolas, O., Gavin, R., Del Rio, J. A., (2009). New insights into cellular prion protein (PrPc) functions: The "ying and yang" of a relevant protein Brain Research Reviews 61, (2), 170-184

The conversion of cellular prion protein (PrPc) a GPI-anchored protein, into a protease-K-resistant and infective form (generally termed PrPsc) is mainly responsible for Transmissible Spongiform Encephalopathies (TSEs), characterized by neuronal degeneration and progressive loss of basic brain functions. Although PrPc is expressed by a wide range of tissues throughout the body, the complete repertoire of its functions has not been fully deter-mined. Recent studies have confirmed its participation in basic physiological processes such as cell proliferation and the regulation of cellular homeostasis. Other studies indicate that PrPc interacts with several molecules to activate signaling cascades with a high number of cellular effects. To deter-mine PrPc functions, transgenic mouse models have been generated in the last decade. In particular, mice lacking specific domains of the PrPc protein have revealed the contribution of these domains to neurodegenerative processes. A dual role of PrPc has been shown, since most authors report protective roles for this protein while others describe pro-apoptotic functions. in this review, we summarize new findings on PrPc functions, especially those related to neural degeneration and cell signaling.

Keywords: Prion, Doppel, Shadoo, Cell death, Cell proliferation, Cell differentiation


Milan, J. L., Planell, J. A., Lacroix, D., (2009). Computational modelling of the mechanical environment of osteogenesis within a polylactic acid-calcium phosphate glass scaffold Biomaterials 30, (25), 4219-4226

A computational model based on finite element method (FEM) and computational fluid dynamics (CFD) is developed to analyse the mechanical stimuli in a composite scaffold made of polylactic acid (PLA) matrix with calcium phosphate glass (Glass) particles. Different bioreactor loading conditions were simulated within the scaffold. In vitro perfusion conditions were reproduced in the model. Dynamic compression was also reproduced in an uncoupled fluid-structure scheme: deformation level was studied analyzing the mechanical response of scaffold alone under static compression while strain rate was studied considering the fluid flow induced by compression through fixed scaffold. Results of the model show that during perfusion test an inlet velocity of 25mum/s generates on scaffold surface a fluid flow shear stress which may stimulate osteogenesis. Dynamic compression of 5% applied on the PLA-Glass scaffold with a strain rate of 0.005s(-1) has the benefit to generate mechanical stimuli based on both solid shear strain and fluid flow shear stress on large scaffold surface area. Values of perfusion inlet velocity or compression strain rate one order of magnitude lower may promote cell proliferation while values one order of magnitude higher may be detrimental for cells. FEM-CFD scaffold models may help to determine loading conditions promoting bone formation and to interpret experimental results from a mechanical point of view.

Keywords: Bone tissue engineering, Scaffold, Finite element analysis, Computational fluid dynamics, Mechanical stimuli


Olivares, A. L., Marshal, E., Planell, J. A., Lacroix, D., (2009). Finite element study of scaffold architecture design and culture conditions for tissue engineering Biomaterials 30, (30), 6142-6149

Tissue engineering scaffolds provide temporary mechanical support for tissue regeneration and transfer global mechanical load to mechanical stimuli to cells through its architecture. In this study the interactions between scaffold pore morphology, mechanical stimuli developed at the cell microscopic level, and culture conditions applied at the macroscopic scale are studied on two regular scaffold structures. Gyroid and hexagonal scaffolds of 55% and 70% porosity were modeled in a finite element analysis and were submitted to an inlet fluid flow or compressive strain. A mechanoregulation theory based on scaffold shear strain and fluid shear stress was applied for determining the influence of each structures on the mechanical stimuli on initial conditions. Results indicate that the distribution of shear stress induced by fluid perfusion is very dependent on pore distribution within the scaffold. Gyroid architectures provide a better accessibility of the fluid than hexagonal structures. Based on the mechanoregulation theory, the differentiation process in these structures was more sensitive to inlet fluid flow than axial strain of the scaffold. This study provides a computational approach to determine the mechanical stimuli at the cellular level when cells are cultured in a bioreactor and to relate mechanical stimuli with cell differentiation.

Keywords: Tissue engineering, Scaffold, Rapid prototyping, Computational fluid dynamics, Finite element


Niepel, M. S., Peschel, D., Sisquella, X., Planell, J. A., Groth, T., (2009). pH-dependent modulation of fibroblast adhesion on multilayers composed of poly(ethylene imine) and heparin Biomaterials 30, (28), 4939-4947

Adhesion of tissue cells is a prerequisite for their growth and differentiation but prevents also apoptosis. Here the layer-by-layer technique (LbL) was used to design multilayer structures of poly(ethylene imine) (PEI) and heparin (HEP) on glass as model biomaterial to control the adhesion of primary human dermal fibroblasts. Distinct surface features like wettability, charge and lateral structures were controlled by changing the pH value of the HEP solution during multilayer assembly to acidic neutral or alkaline, values. While plain terminal layers were rather cytophobic, the pre-adsorption of serum or fibronectin (FN) caused a distinct change in cell morphology in dependence on the pH setup. The effect of serum was more prominent on PEI layers probably due to their positive surface charge, whereas the effect of FN was more pronounced on HEP terminated multilayers possibly due to its ability to bind FN specifically. Those layers which hampered cell adhesion also inhibited growth of human fibroblasts under serum conditions. Conversely, on layers where cell adhesion was increased also an elevated growth and, thus, metabolic activity was observed.

Keywords: Surface modification, Layer-by-layer, Poly(ethylene imine), Heparin, Serum, Fibronectin


Tort, N., Salvador, J. P., Eritja, R., Poch, M., Martinez, E., Samitier, J., Marco, M. P., (2009). Fluorescence site-encoded DNA addressable hapten microarray for anabolic androgenic steroids Trac-Trends in Analytical Chemistry 28, (6), 718-728

We report a new strategy for immunochemical screening of small organic molecules based on the use of a hapten microarray. Using DNA-directed immobilization strategies, we have been able to convert a DNA chip into a hapten microarray by taking advantage of all the benefits of the structural and electrostatic homogeneous properties of DNA. The hapten microarray uses hapten-oligonucleotide probes instead of proteins, avoiding the limitations of preparing stochiometrically-defined protein-oligonucleotide bioconjugates. As proof of concept, we show here the development of a microarray for analysis of anabolic androgenic steroids. The microchip is able to detect several illegal substances with sufficient detectability to be used as a screening method, according to the regulations of the World Anti-Doping Agency for sport and the European Commision for food safety. The results that we show corroborate the universal possibilities of the DNA chip, and, in this case, they open the way to develop hapten microarrays for the immunochemical analysis of small organic molecules.

Keywords: Anti-doping, DNA chip, DNA-directed immobilization (DDI), Fluorescence, Food safety, Hapten microarray, Immunochemical screening, Proof of concept, Small organic molecule, Steroid


Fernandez, J. G., Mills, C. A., Samitier, J., (2009). Complex microstructured 3D surfaces using chitosan biopolymer Small 5, (5), 614-620

A technique for producing micrometer-scale structures over large, nonplanar chitosan surfaces is described. The technique makes use of the rheological characteristics (deformability) of the chitosan to create freestanding, three-dimensional scaffolds with controlled shapes, incorporating defined microtopography. The results of an investigation into the technical limits of molding different combinations of shapes and microtopographies are presented, highlighting the versatility of the technique when used irrespectively with inorganic or delicate organic moulds. The final, replicated scaffolds presented here are patterned with arrays of one-micrometer-tall microstructures over large areas. Structural integrity is characterized by the measurement of structural degradation. Human umbilical vein endothelial cells cultured on a tubular scaffold show that early cell growth is conditioned by the microtopography and indicate possible uses for the structures in biomedical applications. For those applications requiring improved chemical and mechanical resistance, the structures can be replicated in poly(dimethyl siloxane).

Keywords: Biocompatible Materials/ chemistry, Cell Adhesion, Cell Culture Techniques/ methods, Cell Proliferation, Cells, Cultured, Chitosan/ chemistry, Crystallization/methods, Endothelial Cells/ cytology/ physiology, Humans, Materials Testing, Nanostructures/ chemistry/ ultrastructure, Nanotechnology/methods, Particle Size, Surface Properties, Tissue Engineering/methods


Caballero, D., Samitier, J., Bausells, J., Errachid, A., (2009). Direct patterning of anti-human serum albumin antibodies on aldehyde-terminated silicon nitride surfaces for HSA protein detection Small 5, (13), 1531-1534

Silicon nitride surfaces are modified with a triethoxysilane aldehyde self-assembled monolayer for the direct immobilization of monoclonal antibodies and the detection of human serum albumin proteins, without any activation requirements. Surface modification and the specific recognition interaction between the HSA protein and its associated antibody are studied by fluorescence microscopy and atomic force microscopy.

Keywords: Aldehyde, Human serum albumin, Immunosensors, Microcontact printing, Silicon nitride


Diez-Ahedo, Ruth , Normanno, Davide , Esteban, Olga,, Bakker, Gert-Jan, Figdor, Carl, Cambi, Alessandra , Garcia-Parajo, M. F., (2009). Dynamic re-organization of individual adhesion nanoclusters in living cells by ligand-patterned surfaces Small 5, (11), 1258-1263

Ligand-patterned surfaces alter the spatio-temporal organization of specific receptors on the cell membrane. Chemically confined surfaces are fabricated using microcontact patterning. The dynamic re-organization of the integrin LFA-1 in living cells is monitored at the single-molecule level using total internal reflection fluorescence. The image on the left shows individual LFA-1 nanoclusters on a single cell being recruited to ligand-rich areas of the pattern.

Keywords: Cell adhesion, Microcontact printing, Patterning, Single molecule studies


Ruiz, A., Mills, C. A., Valsesia, A., Martinez, E., Ceccone, G., Samitier, J., Colpo, P., Rossi, F., (2009). Large-area, nanoimprint-assisted microcontact stripping for the fabrication of microarrays of fouling/nonfouling nanostructures Small 5, (10), 1133-1137

Methods for the accurate positioning of nanometric beads on a substrate have been developed over a number of years, and range from serial atomic force microscopy (AFM)techniques for single-bead positioning to parallel techniques for the positioning of large populations of beads in monolayer or multilayer architectures, typically from a liquid suspension. For example, topographic cues have been used for bead-based protein array production, although in this case, there is a random distribution of beads within the topography. Bead patterning has also been achieved in capillaries using a micromolding in capillaries (MIMIC) technique. Line patterns with micrometer widths are possible with this technique, achieving good multilayer organization. For monolayer bead patterning at micrometer dimensions, electrostatic forces and similar electrostatic assemblies using nanoxerography, as well as patterning by selective chemical functionalization, by transfer of particles from a liquid–liquid interface, and by subtracting top–down processes, are possible.

Keywords: Microcontact stripping, Nanostructures, Poly(acrylic acid), Polystyrene, Surface patterning


Pla, D., Sischka, A., Albericio, F., Alvarez, M., Fernàndez-Busquets, X., Anselmetti, D., (2009). Optical-tweezers study of topoisomerase inhibition Small 5, (11), 1269-1272

Optical tweezers force-stretching of highly nicked dsDNA, as indicated by the large hysteresis area (black and red curves). Topoisomerase activity is evidenced by a higher level plateau and a complete vanishing of the overstretching hysteresis (green curve), indicating total repair of the DNA nicks. The arrow indicates a drop in the stretching curve resulting from topoisomerase cleavage during the cycle.

Keywords: Atomic force microscopy, DNA, Lamellarin D, Optical tweezers, Topoisomerase


Martinez, E., Lagunas, A., Mills, C. A., Rodriguez-Segui, S., Estevez, M., Oberhansl, S., Comelles, J., Samitier, J., (2009). Stem cell differentiation by functionalized micro- and nanostructured surfaces Nanomedicine 4, (1), 65-82

New fabrication technologies and, in particular, new nanotechnologies have provided biomaterial and biomedical scientists with enormous possibilities when designing customized supports and scaffolds with controlled nanoscale topography and chemistry. The main issue now is how to effectively design these components and choose the appropriate combination of structure and chemistry to tailor towards applications as challenging and complex as stem cell differentiation. Occasionally, an incomplete knowledge of the fundamentals of biological differentiation process has hampered this issue. However, the recent technological advances in creating controlled cellular microenvironments can be seen as a powerful tool for furthering fundamental biology studies. This article reviews the main strategies followed to achieve solutions to this challenge, particularly emphasizing the working hypothesis followed by the authors to elucidate the mechanisms behind the observed effects of structured surfaces on cell behavior.

Keywords: Cell pattering, Differentiation, Microcontact printing, Micropatterning, Microstructure, Nanoimprinting, Nanostructure, Stem cells


Farre, R., Navajas, D., (2009). Quality control: A necessary, but sometimes overlooked, tool for improving respiratory medicine European Respiratory Journal 33, (4), 722-723

The importance of quality control in both general and respiratory medicine has increased in parallel with the complexity of healthcare provision. Only a few decades ago, the respiratory physician and/or scientist had a very limited number of diagnostic and therapeutic tools available and, moreover, medical practice was based almost exclusively on the personal interaction between doctor and patient. Consequently, at that time the quality of the respiratory healthcare depended entirely on the professional competence of the doctor. Although nowadays the relationship between physician and patient undoubtedly still lies at the heart of respiratory medical practice, the quality of the medical service received by the patient also depends on many other participants in a complex healthcare network: various medical specialists, lung function technicians, nurses, respiratory therapists, social workers and administrative staff. Accordingly, several quality control programmes are applied in order to avoid, or at least to reduce, errors in diagnosis, improper performance of procedures, errors in medication, and failure to supervise or monitor care or recognise complications associated with treatment

Keywords: Airway pressure devices, Clinical-trial, Standardization, Spirometry, Lung, Home, Ventilators, Publication, Performance, Technology


Carreras, A., Almendros, I., Acerbi, I., Montserrat, J. M., Navajas, D., Farre, R., (2009). Obstructive apneas induce early release of mesenchymal stem cells into circulating blood Sleep 32, (1), 117-119

STUDY OBJECTIVES: To investigate whether noninvasive application of recurrent airway obstructions induces early release of mesenchymal stem cells into the circulating blood in a rat model of obstructive sleep apnea. DESIGN: Prospective controlled animal study. SETTING: University laboratory. PATIENTS OR PARTICIPANTS: Twenty male Sprague-Dawley rats (250-300 g). INTERVENTIONS: A specially designed nasal mask was applied to the anesthetized rats. Ten rats were subjected to a pattern of recurrent obstructive apneas (60 per hour, lasting 15 seconds each) for 5 hours. Ten anesthetized rats were used as controls. MEASUREMENTS AND RESULTS: Mesenchymal stem cells from the blood and bone marrow samples were isolated and cultured to count the total number of colony-forming unit fibroblasts (CFU-F) of adherent cells after 9 days in culture. The number of CFU-F from circulating blood was significantly (P = 0.02) higher in the rats subjected to recurrent obstructive apneas (5.00 +/- 1.16; mean +/- SEM) than in controls (1.70 +/- 0.72). No significant (P = 0.54) differences were observed in CFU-F from bone marrow. CONCLUSIONS: Application of a pattern of airway obstructions similar to those experienced by patients with sleep apnea induced an early mobilization of mesenchymal stem cells into circulating blood.

Keywords: Adipocytes/cytology, Animals, Blood Cell Count, Bone Marrow Cells/ cytology, Cell Adhesion/physiology, Cell Count, Cell Differentiation/physiology, Cell Division/physiology, Disease Models, Animal, Fibroblasts/cytology, Male, Mesenchymal Stem Cells/ cytology, Osteocytes/cytology, Rats, Rats, Sprague-Dawley, Sleep Apnea, Obstructive/ blood, Stem Cells/cytology


Arteaga, O., Escudero, C., Oncins, G., El-Hachemic, Z., Llorens, J., Crusats, J., Canillas, A., Ribo, J. M., (2009). Reversible mechanical induction of optical activity in solutions of soft-matter nanophases Chemistry - An Asian Journal 4, (11), 1687-1696

Nanophases of J-aggregates of several achiral amphiphilic porphyrins, which have thin long acicular shapes (nanoribbons), show the immediate and reversible formation of a stationary mechano-chiral state in the solution by vortex stirring, as detected by their circular dichroic signals measured by 2-modulator generallized ellipsometry. The results suggest that when a macroscopic chiral force creates supramolecular chirality, it also creates an enantiomeric excess of screw distortions, which may be detected by their excitonic absorption. An explanation on the effect of the shear flow gradients is proposed on the basis of the orientation of the rotating particles in the vortex and the size, shape, and mechanical properties of the nanoparticles.

Keywords: Chirality, Circular dichroism, Nanoparticles, Selfassembly, Supramolecular chemistry


Rangel, A., Madroñal, N., Gruart i Massó, A., Gavin,, Llorens, Sumoy, Torres, Delgado-Gar, Del Rio, J. A., (2009). Regulation of GABA(A) and glutamate receptor expression, synaptic facilitation and long-term potentiation in the hippocampus of prion mutant mice PLoS ONE 4, (10), e7592 (1-14)

Background: Prionopathies are characterized by spongiform brain degeneration, myoclonia, dementia, and periodic electroencephalographic (EEG) disturbances. The hallmark of prioniopathies is the presence of an abnormal conformational isoform (PrPsc) of the natural cellular prion protein (PrPc) encoded by the Prnp gene. Although several roles have been attributed to PrPc, its putative functions in neuronal excitability are unknown. Although early studies of the behavior of Prnp knockout mice described minor changes, later studies report altered behavior. To date, most functional PrPc studies on synaptic plasticity have been performed in vitro. To our knowledge, only one electrophysiological study has been performed in vivo in anesthetized mice, by Curtis and coworkers. They reported no significant differences in paired-pulse facilitation or LTP in the CA1 region after Schaffer collateral/commissural pathway stimulation. Methodology/Principal Findings: Here we explore the role of PrPc expression in neurotransmission and neural excitability using wild-type, Prnp 2/2 and PrPc-overexpressing mice (Tg20 strain). By correlating histopathology with electrophysiology in living behaving mice, we demonstrate that both Prnp 2/2 mice but, more relevantly Tg20 mice show increased susceptibility to KA, leading to significant cell death in the hippocampus. This finding correlates with enhanced synaptic facilitation in paired-pulse experiments and hippocampal LTP in living behaving mutant mice. Gene expression profiling using IlluminaTM microarrays and Ingenuity pathways analysis showed that 129 genes involved in canonical pathways such as Ubiquitination or Neurotransmission were co-regulated in Prnp 2/2 and Tg20 mice. Lastly, RT-qPCR of neurotransmission-related genes indicated that subunits of GABAA and AMPA-kainate receptors are co-regulated in both Prnp 2/2 and Tg20 mice. Conclusions/Significance: Present results demonstrate that PrPc is necessary for the proper homeostatic functioning of hippocampal circuits, because of its relationships with GABAA and AMPA-Kainate neurotransmission. New PrPc functions have recently been described, which point to PrPc as a target for putative therapies in Alzheimer’s disease. However, our results indicate that a ‘‘gain of function’’ strategy in Alzheimer’s disease, or a ‘‘loss of function’’ in prionopathies, may impair PrPc function, with devastating effects. In conclusion, we believe that present data should be taken into account in the development of future therapies.

Keywords: Prions, Prionopathies, Natural cellular prion protein (PrPc), Hippocampus, GABA (A) receptor, Glutamate Receptor


Krishnan, R., Park, C. Y., Lin, Y. C., Mead, J., Jaspers, R. T., Trepat, X., Lenormand, G., Tambe, D., Smolensky, A. V., Knoll, A. H., Butler, J. P., Fredberg, J. J., (2009). Reinforcement versus fluidization in cytoskeletal mechanoresponsiveness PLoS ONE 4, (5), e5486

Every adherent eukaryotic cell exerts appreciable traction forces upon its substrate. Moreover, every resident cell within the heart, great vessels, bladder, gut or lung routinely experiences large periodic stretches. As an acute response to such stretches the cytoskeleton can stiffen, increase traction forces and reinforce, as reported by some, or can soften and fluidize, as reported more recently by our laboratory, but in any given circumstance it remains unknown which response might prevail or why. Using a novel nanotechnology, we show here that in loading conditions expected in most physiological circumstances the localized reinforcement response fails to scale up to the level of homogeneous cell stretch; fluidization trumps reinforcement. Whereas the reinforcement response is known to be mediated by upstream mechanosensing and downstream signaling, results presented here show the fluidization response to be altogether novel: it is a direct physical effect of mechanical force acting upon a structural lattice that is soft and fragile. Cytoskeletal softness and fragility, we argue, is consistent with early evolutionary adaptations of the eukaryotic cell to material properties of a soft inert microenvironment.

Keywords: -----


Hosta, L., Pla, M., Arbiol, J., Lopez-Iglesias, C., Samitier, J., Cruz, L. J., Kogan, M. J., Albericio, F., (2009). Conjugation of Kahalalide F with gold nanoparticles to enhance in vitro antitumoral activity Bioconjugate Chemistry 20, (1), 138-146

Two Cys-containing analogues of the anticancer drug Kahalalide F are synthesized and conjugated to 20 and 40 nm gold nanoparticles (GNPs). The resulting complexes are characterized by different analytical techniques to confirm the attachment of peptide to the GNPs. The self-assembly capacity of a peptide dramatically influences the final ratio number of molecules per nanoparticle, saturating the nanoparticle surface and prompting multilayered capping on the surface. In such way, the nanoparticle could act as a concentrator for the delivery of drugs, thereby increasing bioactivity. The GNP sizes and the conjugation have influence on the biological activities. Kahalalide F analogues conjugated with GNPs are located subcellularly at lysosome-like bodies, which may be related to the action mechanism of Kahalalide F. The results suggest that the selective delivery and activity of Kahalalide F analogues can be improved by conjugating the peptides to GNPs.

Keywords: Electrical detection, Cellular uptake, Drug-delivery, Cancer-cells, Peptide, Size, Surface, Absorption, Scattering, Therapy


Caballero-Briones, F., Artes, J. M., Diez-Perez, I., Gorostiza, P., Sanz, F., (2009). Direct observation of the valence band edge by in situ ECSTM-ECTS in p-type Cu2O layers prepared by copper anodization Journal of Physical Chemistry C 113, (3), 1028-1036

Polycrystalline Cu2O layers have been selectively grown by electrochemical anodization of polycrystalline Cu electrodes in an alkaline medium (pH 12.85). Uniform layers with thicknesses around 100 nm have been obtained. Using electrochemical impedance spectroscopy, it was concluded that the Cu2O films behave as a p-type semiconductor. The Mott-Schottky plot gives a value for the flat band potential of U-FB = -255 mV vs silver/silver chloride electrode (SSC), an estimated carrier density N-A = 6.1 x 10(17) cm(-3), and the space charge layer width was calculated to be W-SCL = 9 nm at a band bending of 120 mV. The electronic structure of the Cu vertical bar Cu2O vertical bar electrolyte interface was for the first time probed by in situ electrochemical tunneling spectroscopy. The use of in situ electrochemical scanning tunneling microscopy allows us to directly observed the valence band edge and determine its position against the absolute energy scale to be E-VB = -4.9 eV. Finally, we constructed a quantitative electronic diagram of the Cu vertical bar Cu2O vertical bar electrolyte interface, where the positions of the valence and conduction band edges are depicted, as well as the edge of the previously reported electronic subband.

Keywords: 0.1 m NaOH, Electrochemical tunneling spectroscopy, Cuprous-oxide films, Anodic-oxidation, Electronic-structure, Alkaline-solution, Aqueous-solution, Initial-stages, Passive film, Thin-films


Gugutkov, Dencho, Gonzalez-Garcia, Cristina, Rodriguez Hernandez, Jose Carlos, Altankov, George, Salmeron-Sanchez, Manuel, (2009). Biological activity of the substrate-induced fibronectin network: insight into the third dimension through electrospun fibers Langmuir 25, (18), 10893-10900

Fibronectin (FN) fibrillogenesis is a cell-mediated process involving integrin activation that results in conformational changes of FN molecules and the organization of actin cytoskeleton. A similar process can be induced by some chemistries in the absence of cells, e.g., poly(ethyl acrylate) (PEA), which enhance FN-FN interactions leading to the formation of a biologically active network. Atomic force microscopy images of single FN molecules, at the early stages of adsorption on plane PEA, allow one to rationalize the process. Further, the role of the spatial organization of the FN network on the cellular response is investigated through its adsorption on electrospun fibers. Randomly oriented and aligned PEA fibers were prepared to mimic the three-dimensional organization of the extracellular matrix. The formation of the FN network on the PEA fibers but not on the supporting coverglass was confirmed. Fibroblasts aligned with oriented fibers, displayed extended morphology, developed linearly organized focal adhesion complexes, and matured actin filaments. Conversely, on random PEA fibers, cells acquired polygonal morphology with altered actin cytoskeleton but well-developed focal adhesions. Late FN matrix formation was also influenced: spatially organized FN matrix fibrils along the oriented PEA fibers and an altered arrangement on random ones.

Keywords: AFM, Cell-adhesion, Dependent conformations, Hydrophobic surfaces, Extracellular-matrix, Bound fibronectin, Polymer surfaces, Integrin binding, Biocompatibility, Adsorption


Sellares, J., Acerbi, I., Loureiro, H., Dellaca, R. L., Ferrer, M., Torres, A., Navajas, D., Farre, R., (2009). Respiratory impedance during weaning from mechanical ventilation in a mixed population of critically ill patients British Journal of Anaesthesia 103, (6), 828-832

Worsening of respiratory mechanics during a spontaneous breathing trial (SBT) has been traditionally associated with weaning failure, although this finding is based on studies with chronic obstructive pulmonary disease patients only. The aim of our study was to assess the course of respiratory impedance non-invasively measured by forced oscillation technique (FOT) during a successful and failed SBT in a mixed population. Thirty-four weaning trials were reported in 29 consecutive mechanically ventilated patients with different causes of initiation of ventilation. During the SBT, the patient was breathing through a conventional T-piece connected to the tracheal tube. FOT (5 Hz, +/- 1 cm H2O, 30 s) was applied at 5, 10, 15, 20, 25, and 30 min. Respiratory resistance (Rrs) and reactance (Xrs) were computed from pressure and flow measurements. The frequency to tidal volume ratio f/V-t was obtained from the flow signal. At the end of the trial, patients were divided into two groups: SBT success and failure. Mixed model analysis showed no significant differences in Rrs and Xrs over the course of the SBT, or between the success (n=16) and the failure (n=18) groups. In contrast, f/V-t was significantly (P < 0.001) higher in the failure group. Worsening of respiratory impedance measured by FOT is not a common finding during a failed SBT in a typically heterogeneous intensive care unit population of mechanically ventilated patients.

Keywords: Ventilation, High frequency oscillation, Ventilation, Mechanical, Ventilation, Respiratory impedance


Lundin, Daniel, Torrents, Eduard, Poole, Anthony, Sjoberg, Britt-Marie, (2009). RNRdb, a curated database of the universal enzyme family ribonucleotide reductase, reveals a high level of misannotation in sequences deposited to Genbank BMC Genomics 10, (1), 589

BACKGROUND:Ribonucleotide reductases (RNRs) catalyse the only known de novo pathway for deoxyribonucleotide synthesis, and are therefore essential to DNA-based life. While ribonucleotide reduction has a single evolutionary origin, significant differences between RNRs nevertheless exist, notably in cofactor requirements, subunit composition and allosteric regulation. These differences result in distinct operational constraints (anaerobicity, iron/oxygen dependence and cobalamin dependence), and form the basis for the classification of RNRs into three classes.DESCRIPTION:In RNRdb (Ribonucleotide Reductase database), we have collated and curated all known RNR protein sequences with the aim of providing a resource for exploration of RNR diversity and distribution. By comparing expert manual annotations with annotations stored in Genbank, we find that significant inaccuracies exist in larger databases. To our surprise, only 23% of protein sequences included in RNRdb are correctly annotated across the key attributes of class, role and function, with 17% being incorrectly annotated across all three categories. This illustrates the utility of specialist databases for applications where a high degree of annotation accuracy may be important. The database houses information on annotation, distribution and diversity of RNRs, and links to solved RNR structures, and can be searched through a BLAST interface. RNRdb is accessible through a public web interface at http://rnrdb.molbio.su.se.CONCLUSION:RNRdb is a specialist database that provides a reliable annotation and classification resource for RNR proteins, as well as a tool to explore distribution patterns of RNR classes. The recent expansion in available genome sequence data have provided us with a picture of RNR distribution that is more complex than believed only a few years ago; our database indicates that RNRs of all three classes are found across all three cellular domains. Moreover, we find a number of organisms that encode all three classes.

Keywords: Enzymology (Biochemistry and Molecular Biophysics), Computer Applications (Computational Biology)


Garcia, J., Madrid, C., Cendra, M., Juarez, A., Pons, M., (2009). N9L and L9N mutations toggle Hha binding and hemolysin regulation by Escherichia coli and Vibrio cholerae H-NS FEBS Letters 583, (17), 2911-2916

Proteins of the Hha/YmoA family co-regulate with H-NS the expression of virulence factors in Enterobacteriaceae. Vibrio cholerae lacks Hha-like proteins and its H-NS (vcH-NS) is unable to bind Hha, in spite of the conservation of a key residue for Hha binding by Escherichia coli H-NS (ecH-NS). Exchange of the residues in position 9 between vcH-NS and ecH-NS strongly reduces Hha binding by ecH-NS and introduces it in vcH- NS. These mutations strongly affect the repression of the hemolysin operon in E. coli and the electrophoretic mobility of complexes formed with a DNA fragment containing its regulatory region.

Keywords: Nucleoid associated protein, H-NS, Hha, Transcription repression, NMR, Electrophoretic mobility shift assays


Nussio, M. R., Oncins, G., Ridelis, I., Szili, E., Shapter, J. G., Sanz, F., Voelcker, N. H., (2009). Nanomechanical characterization of phospholipid bilayer islands on flat and porous substrates: A force spectroscopy study Journal of Physical Chemistry B 113, (30), 10339-10347

In this study, we compare for the first time the nanomechanical properties of lipid bilayer islands on flat and porous surfaces. 1,2-Dimyzistoyl-sn-glycero-3-phosphatidylcholine (DMPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) bilayers were deposited on flat (silicon and mica) and porous silicon (pSi) substrate surfaces and examined using atomic force spectroscopy and force volume imaging. Force spectroscopy measurements revealed the effects of the underlying substrate and of the lipid phase on the nanomechanical properties of bilayers islands. For mica and silicon, significant differences in breakthrough force between the center and the edges of bilayer islands were observed for both phospolipids. These differences were more pronounced for DMPC than for DPPC, presumably due to melting effects at the edges of DMPC bilayers. In contrast, bilayer islands deposited on pSi yielded similar breakthrough forces in the central region and along the perimeter of the islands, and those values in turn were similar to those measured along the perimeter of bilayer islands deposited on the flat substrates. The study also demonstrates that pSi is suitable solid support for the formation of pore-spanning phospholipid bilayers with potential applications in transmembrane protein studies, drug delivery, and biosensing.

Keywords: Black lipid-membranes, Gold surfaces, Supported bilayers, Channel activity, Micro-BLMS, Silicon, Proteins, Vesicles, AFM, Temperature measurement


Mir, M., Cameron, P. J., Zhong, X., Azzaroni, O., Alvarez, M., Knoll, W., (2009). Anti-fouling characteristics of surface-confined oligonucleotide strands bioconjugated on streptavidin platforms in the presence of nanomaterials Talanta 78, (3), 1102-6

This work describes our studies on the molecular design of interfacial architectures suitable for DNA sensing which could resist non-specific binding of nanomaterials commonly used as labels for amplifying biorecognition events. We observed that the non-specific binding of bio-nanomaterials to surface-confined oligonucleotide strands is highly dependent on the characteristics of the interfacial architecture. Thiolated double stranded oligonucleotide arrays assembled on Au surfaces evidence significant fouling in the presence of nanoparticles (NPs) at the nanomolar level. The non-specific interaction between the oligonucleotide strands and the nanomaterials can be sensitively minimized by introducing streptavidin (SAv) as an underlayer conjugated to the DNA arrays. The role of the SAv layer was attributed to the significant hydrophilic repulsion between the SAv-modified surface and the nanomaterials in close proximity to the interface, thus conferring outstanding anti-fouling characteristics to the interfacial architecture. These results provide a simple and straightforward strategy to overcome the limitations introduced by the non-specific binding of labels to achieve reliable detection of DNA-based biorecognition events.

Keywords: DNA/ analysis, Gold, Nanostructures/ chemistry, Oligonucleotide Array Sequence Analysis/ instrumentation, Oligonucleotides/ chemistry, Streptavidin/ chemistry, Sulfhydryl Compounds


Gramse, G., Casuso, I., Toset, J., Fumagalli, L., Gomila, G., (2009). Quantitative dielectric constant measurement of thin films by DC electrostatic force microscopy Nanotechnology 20, (39), 395702

A simple method to measure the static dielectric constant of thin films with nanometric spatial resolution is presented. The dielectric constant is extracted from DC electrostatic force measurements with the use of an accurate analytical model. The method is validated here on thin silicon dioxide films (8 nm thick, dielectric constant approximately 4) and purple membrane monolayers (6 nm thick, dielectric constant approximately 2), providing results in excellent agreement with those recently obtained by nanoscale capacitance microscopy using a current-sensing approach. The main advantage of the force detection approach resides in its simplicity and direct application on any commercial atomic force microscope with no need of additional sophisticated electronics, thus being easily available to researchers in materials science, biophysics and semiconductor technology.

Keywords: Roscopy, Membrane, Tip, Polarizability, Polarization, Resolution, Nanotubes, Charge


Sunyer, R., Trepat, X., Fredberg, J. J., Farre, R., Navajas, D., (2009). The temperature dependence of cell mechanics measured by atomic force microscopy Physical Biology 6, (2), 25009

The cytoskeleton is a complex polymer network that regulates the structural stability of living cells. Although the cytoskeleton plays a key role in many important cell functions, the mechanisms that regulate its mechanical behaviour are poorly understood. Potential mechanisms include the entropic elasticity of cytoskeletal filaments, glassy-like inelastic rearrangements of cross-linking proteins and the activity of contractile molecular motors that sets the tensional stress (prestress) borne by the cytoskeleton filaments. The contribution of these mechanisms can be assessed by studying how cell mechanics depends on temperature. The aim of this work was to elucidate the effect of temperature on cell mechanics using atomic force microscopy. We measured the complex shear modulus (G*) of human alveolar epithelial cells over a wide frequency range (0.1-25.6 Hz) at different temperatures (13-37 degrees C). In addition, we probed cell prestress by mapping the contractile forces that cells exert on the substrate by means of traction microscopy. To assess the role of actomyosin contraction in the temperature-induced changes in G* and cell prestress, we inhibited the Rho kinase pathway of the myosin light chain phosphorylation with Y-27632. Our results show that with increasing temperature, cells become stiffer and more solid-like. Cell prestress also increases with temperature. Inhibiting actomyosin contraction attenuated the temperature dependence of G* and prestress. We conclude that the dependence of cell mechanics with temperature is dominated by the contractile activity of molecular motors.

Keywords: Membrane Stress Failure, Frog Skeletal-Muscle, Extracellular-Matrix, Glass-Transition, Energy Landscape, Actin-Filaments, Living Cell, Single, Traction, Cytoskeleton


Fonollosa, J., Halford, B., Fonseca, L., Santander, J., Udina, S., Moreno, M., Hildenbrand, J., Wöllenstein, J., Marco, S., (2009). Ethylene optical spectrometer for apple ripening monitoring in controlled atmosphere store-houses Sensors and Actuators B: Chemical 136, (2), 546-554

In today's store-houses the ripening of fruit is controlled by managing the ethylene concentration in the ambient atmosphere. Precise and continuous ethylene monitoring is very advantageous since low ethylene concentrations are produced by the fruit itself and are indicative of its ripeness, and on other occasions, ethylene is externally added when ripeness or degreening of the product must be promoted. In this work, a multichannel mid-infrared spectrometer for ethylene measurement is built and characterized. The instrument contains additional channels to reject potential cross-interferences like ammonia and ethanol. Additionally, these channels are useful for monitoring a potential malfunction of the cooling system and possible fouling of the fruit, respectively. The complete spectrometer contains a silicon-based macroporous infrared (IR) emitter, a miniaturized long path cell (white cell), a four-channel detector module, low-noise analog amplification and filtering, and a microcontroller-based lock-in amplifier. The new inner architecture of the detector module features a fourfold thermopile array with narrow band optical filters attached by flip-chip technology, and a Fresnel lens array attached on the lid of the package. Laboratory tests show that the system is able to distinguish between ammonia and ethylene, featuring a detection limit of 30 ppm and 160 ppm (95% confidence) for ethylene and ammonia, respectively. Field tests show that the spectrometer is suitable as an ethylene alarm to detect fruit ripening and prevent fruit to decline into senescence. Simulation results show that system selectivity could be improved by setting ammonia channel to another absorption wavelength.

Keywords: IR spectrometer, Ethylene, Fruit storage, Fresnel lens, White cell, Lock-in amplifier


Mir, M., Homs, A., Samitier, J., (2009). Integrated electrochemical DNA biosensors for lab-on-a-chip devices Electrophoresis 30, (19), 3386-3397

Analytical devices able to perform accurate and fast automatic DNA detection or sequencing procedures have many potential benefits in the biomedical and environmental fields. The conversion of biological or biochemical responses into quantifiable optical, mechanical or electronic signals is achieved by means of biosensors. Most of these transducing elements can be miniaturized and incorporated into lab-on-a-chip devices, also known as Micro Total Analysis Systems. The use of multiple DNA biosensors integrated in these miniaturized laboratories, which perform several analytical operations at the microscale, has many cost and efficiency advantages. Tiny amounts of reagents and samples are needed and highly sensitive, fast and parallel assays can be done at low cost. A particular type of DNA biosensors are the ones used based on electrochemical principles. These sensors offer several advantages over the popular fluorescence-based detection schemes. The resulting signal is electrical and can be processed by conventional electronics in a very cheap and fast manner. Furthermore, the integration and miniaturization of electrochemical transducers in a microsystem makes easier its fabrication in front of the most common currently used detection method. In this review, different electrochemical DNA biosensors integrated in analytical microfluidic devices are discussed and some early stage commercial products based on this strategy are presented.

Keywords: DNA, Electrochemical DNA biosensors, Electrochemistry, Lab-on-a-chip, Micro Total Analysis systems, Field-effect transistors, Sequence-specific detection, Chemical-analysis systems, Solid-state nanopores, Carbon nanotubes, Microfluidic device, Electrical detection, Hybridization, Molecules, Sensor


Malandrino, A., Planell, J. A., Lacroix, D., (2009). Statistical factorial analysis on the poroelastic material properties sensitivity of the lumbar intervertebral disc under compression, flexion and axial rotation Journal of Biomechanics 42, (16), 2780-2788

A statistical factorial analysis approach was conducted on a poroelastic finite element model of a lumbar intervertebral disc to analyse the influence of six material parameters (permeabilities of annulus, nucleus, trabecular vertebral bone, cartilage endplate and Young's moduli of annulus and nucleus) on the displacement, fluid pore pressure and velocity fields. Three different loading modes were investigated: compression, flexion and axial rotation. Parameters were varied considering low and high levels in agreement with values found in the literature for both healthy and degenerated lumbar discs. Results indicated that annulus stiffness and cartilage endplate permeability have a strong effect on the overall fluid- and solid-phase responses in all loading conditions studied. Nucleus stiffness showed its main relevance in compression while annulus permeability influenced mainly the annular pressure field. This study confirms the permeability's central role in biphasic modelling and highlights for the lumbar disc which experiments of material property characterization should be performed. Moreover, such sensitivity study gives important guidelines in poroelastic material modelling and finite element disc validation.

Keywords: Intervertebral disc, Permeability, Fractional factorial design, Design of experiments, Finite element analysis


Kostadinova, A., Seifert, B., Albrecht, W., Malsch, G., Groth, T., Lendlein, A., Altankov, G., (2009). Novel polymer blends for the preparation of membranes for biohybrid liver systems Journal of Biomaterials Science, Polymer Edition 20, (5-6), 821-839

It was found previously that membranes based on co-polymers of acrylonitrile (AN) and 2-acrylamido-2-methyl-propansulfonic acid (AMPS) greatly stimulated the functionality and survival of primary hepatocytes. In those studies, however, the pure AN-AMPS co-polymer had poor membrane-forming properties, resulting in quite dense rubber-like membranes. Hence, membranes with required permeability and optimal biocompatibility were obtained by blending the AN-AMPS co-polymer with poly(acrylonitrile) homopolymer (PAN). The amount of PAN (P) and AN-AMPS (A) in the blend was varied from pure PAN (P/A-100/0) over P/A-75/25 and P/A-50/50 to pure AN-AMPS co-polymer (P/A-0/100). A gradual decrease of molecular cut-off of membranes with increase of AMPS concentration was found, which allows tailoring membrane permeability as necessary. C3A hepatoblastoma cells were applied as a widely accepted cellular model for assessment of hepatocyte behaviour by attachment, viability, growth and metabolic activity. It was found that the blend P/A-50/50, which possessed an optimal permeability for biohybrid liver systems, supported also the attachment, growth and function of C3A cells in terms of fibronectin synthesis and P-450 isoenzyme activity. Hence, blend membranes based on a one to one mixture of PAN and AN-AMPS combine sufficient permeability with the desired cellular compatibility for application in bioreactors for liver replacement.

Keywords: Bioartificial liver, C3A cells, Fibronectin, P-450, Synthetic membrane


Sunyer, R., Ritort, F., Farre, R., Navajas, D., (2009). Thermal activation and ATP dependence of the cytoskeleton remodeling dynamics Physical Review E 79, (5), 51920

The cytoskeleton (CSK) is a nonequilibrium polymer network that uses hydrolyzable sources of free energy such as adenosine triphosphate (ATP) to remodel its internal structure. As in inert nonequilibrium soft materials, CSK remodeling has been associated with structural rearrangements driven by energy-activated processes. We carry out particle tracking and traction microscopy measurements of alveolar epithelial cells at various temperatures and ATP concentrations. We provide the first experimental evidence that the remodeling dynamics of the CSK is driven by structural rearrangements over free-energy barriers induced by thermally activated forces mediated by ATP. The measured activation energy of these forces is similar to 40k(B)T(r) (k(B) being the Boltzmann constant and T-r being the room temperature). Our experiments provide clues to understand the analogy between the dynamics of the living CSK and that of inert nonequilibrium soft materials.

Keywords: Biochemistry, Cellular biophysics, Free energy, Molecular biophysics, Physiological models


Gimenez-Oya, V., Villacanas, O., Fernàndez-Busquets, X., Rubio-Martinez, J., Imperial, S., (2009). Mimicking direct protein-protein and solvent-mediated interactions in the CDP-methylerythritol kinase homodimer: a pharmacophore-directed virtual screening approach Journal of Molecular Modeling 15, (8), 997-1007

The 2C-methylerythritol 4-phosphate (MEP) pathway for the biosynthesis of isopentenyl pyrophosphate and its isomer dimethylallyl pyrophosphate, which are the precursors of isoprenoids, is present in plants, in the malaria parasite Plasmodium falciparum and in most eubacteria, including pathogenic agents. However, the MEP pathway is absent from fungi and animals, which have exclusively the mevalonic acid pathway. Given the characteristics of the MEP pathway, its enzymes represent potential targets for the generation of selective antibacterial, antimalarial and herbicidal molecules. We have focussed on the enzyme 4-(cytidine 5'-diphospho)-2-C-methyl-D: -erythritol kinase (CMK), which catalyses the fourth reaction step of the MEP pathway. A molecular dynamics simulation was carried out on the CMK dimer complex, and protein-protein interactions analysed, considering also water-mediated interactions between monomers. In order to find small molecules that bind to CMK and disrupt dimer formation, interactions observed in the dynamics trajectory were used to model a pharmacophore used in database searches. Using an intensity-fading matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry approach, one compound was found to interact with CMK. The data presented here indicate that a virtual screening approach can be used to identify candidate molecules that disrupt the CMK-CMK complex. This strategy can contribute to speeding up the discovery of new antimalarial, antibacterial, and herbicidal compounds.

Keywords: Solvent-mediated interactions, Protein-protein interactions, Molecular dynamics, Drug design, Intensisty-fading MALDI-TOF mass spectrometry


Lacroix, D., Planell, J. A., Prendergast, P. J., (2009). Computer-aided design and finite-element modelling of biomaterial scaffolds for bone tissue engineering Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences 367, (1895), 1993-2009

Scaffold biomaterials for tissue engineering can be produced in many different ways depending on the applications and the materials used. Most research into new biomaterials is based on an experimental trial-and-error approach that limits the possibility of making many variations to a single material and studying its interaction with its surroundings. Instead, computer simulation applied to tissue engineering can offer a more exhaustive approach to test and screen out biomaterials. In this paper, a review of the current approach in biomaterials designed through computer-aided design (CAD) and through finite-element modelling is given. First we review the approach used in tissue engineering in the development of scaffolds and the interactions existing between biomaterials, cells and mechanical stimuli. Then, scaffold fabrication through CAD is presented and characterization of existing scaffolds through computed images is reviewed. Several case studies of finite-element studies in tissue engineering show the usefulness of computer simulations in determining the mechanical environment of cells when seeded into a scaffold and the proper design of the geometry and stiffness of the scaffold. This creates a need for more advanced studies that include aspects of mechanobiology in tissue engineering in order to be able to predict over time the growth and differentiation of tissues within scaffolds. Finally, current perspectives indicate that more efforts need to be put into the development of such advanced studies, with the removal of technical limitations such as computer power and the inclusion of more accurate biological and genetic processes into the developed algorithms.

Keywords: Biomechanics, Tissue engineering, Biomaterials, Finite-element modelling


Rico, P., Rodriguez Hernandez, J. C., Moratal, D., Altankov, G., Monleon Pradas, M., Salmeron-Sanchez, M., (2009). Substrate-induced assembly of fibronectin into networks. Influence of surface chemistry and effect on osteoblast adhesion Tissue Engineering Part A 15, (00), 1-11

The influence of surface chemistry -substrates with controlled surface density of -OH groups- on fibronectin conformation and distribution is directly observed by Atomic Force Microscopy (AFM). FN fibrillogenesis, which is known to be a process triggered by interaction with integrins, is shown in our case to be induced by the substrate (in absence of cells), which is able to enhance FN-FN interactions leading to the formation of a protein network on the material surface. This phenomenon depends both on surface chemistry and protein concentration. The level of the FN fibrillogenesis was quantified by calculating the fractal dimension of the adsorbed protein from image analysis of the AFM results. The total amount of adsorbed FN is obtained by making use of a methodology which employs western-blotting combined with image analysis of the corresponding protein bands, with the lowest sensitivity threshold equal to 15 ng of adsorbed protein. Furthermore, FN adsorption is correlated to human osteoblast adhesion through morphology and actin cytoskeleton formation. Actin polymerization is in need of the formation of the protein network on the substrate's surface. Cell morphology is more rounded (as quantified by calculating the circularity of the cells by image analysis) the lower the degree of FN fibrillogenesis on the substrate.

Keywords: Cell-adhesion, Conformational-changes, Electron-microscopy, Protein adsorption, Fractal dimension, Integrin binding, Biocompatibility, Monolayers, Matrix, Fibrillogenesis


Fiz, J. A., Morera Prat, J., Jané, R., (2009). Treatment of patients with simple snoring Archivos de Bronconeumología 45, (10), 508-515

Management of snoring is part of the treatment offered to patients with obstructive sleep apnea syndrome. In patients who do not have this syndrome, however, snoring should be treated according to the severity of the condition. General or specific therapeutic measures should be applied to snorers that have concomitant cardiovascular disease or unrefreshing sleep and in cases in which an individual's snoring disturbs his/her partner's sleep. The present review examines the treatments currently available for snorers and the current state of knowledge regarding each option. It will also focus on the possible indications of these treatments and evaluate their effectiveness.

Keywords: Simple snoring, Treatment, General measures, Surgery


Morgenstern, C., Schwaibold, M., Randerath, W. J., Bolz, A., Jané, R., (2009). Assessment of changes in upper airway obstruction by automatic identification of inspiratory flow limitation during sleep IEEE Transactions on Biomedical Engineering 56, (8), 2006-2015

New techniques for automatic invasive and noninvasive identification of inspiratory flow limitation (IFL) are presented. Data were collected from 11 patients with full nocturnal polysomnography and gold-standard esophageal pressure (Pes) measurement. A total of 38,782 breaths were extracted and automatically analyzed. An exponential model is proposed to reproduce the relationship between Pes and airflow of an inspiration and achieve an objective assessment of changes in upper airway obstruction. The characterization performance of the model is appraised with three evaluation parameters: mean-squared error when estimating resistance at peak pressure, coefficient of determination, and assessment of IFL episodes. The model's results are compared to the two best-performing models in the literature. The obtained gold-standard IFL annotations were then employed to train, test, and validate a new noninvasive automatic IFL classification system. Discriminant analysis, support vector machines, and Adaboost algorithms were employed to objectively classify breaths noninvasively with features extracted from the time and frequency domains of the breaths' flowpatterns. The results indicated that the exponential model characterizes IFL and subtle relative changes in upper airway obstruction with the highest accuracy and objectivity. The new noninvasive automatic classification system also succeeded in identifying IFL episodes, achieving a sensitivity of 0.87 and a specificity of 0.85.

Keywords: Esophageal pressure, Exponential model, Inspiratory flow limitation, Noninvasive, Classification, Upper airway obstruction


Munoz, L. M., Casals, A., (2009). Improving the human-robot interface through adaptive multispace transformation IEEE Transactions on Robotics 25, (5), 1208-1213

Teleoperation is essential for applications in which, despite the availability of a precise geometrical definition of the working area, a task cannot be explicitly programmed. This paper describes a method of assisted teleoperation that improves the execution of such tasks in terms of ergonomics, precision, and reduction of execution time. The relationships between the operating spaces corresponding to the human-robot interface triangle are analyzed. The proposed teleoperation aid is based on applying adaptive transformations between these spaces.

Keywords: Human factors, Human-robot interaction, Teleoperation


Lopez-Martinez, M. J., Campo, E. M., Caballero, D., Fernandez, E., Errachid, A., Esteve, J., Plaza, J. A., (2009). Versatile micropipette technology based on deep reactive ion etching and anodic bonding for biological applications Journal of Micromechanics and Microengineering 19, (10), 105013 (10 pp.)

A novel, versatile and robust technology to manufacture transparent micropipettes, suitable for biological applications, is presented here. Up to three deep reactive ion etchings have been included in the manufacturing process, providing highly controlled geometry of reservoirs, connection cavities and inlet ports. Etching processes have been used for the definition of chip and reservoir and for nozzle release. Additionally, special design considerations have been developed to facilitate micro-to-macro fluidic connections. Implementation of anodic bonding to seal a glass substrate to the fluidic structure etched on Si, allowed observation of the flow inside the reservoir. Flow tests have been conducted by filling channels with different fluids. Flow was observed under an optical microscope, both during capillary filling and also during pumping. Dispensing has been demonstrated by functionalizing the surface of an AFM cantilever. Mechanical tests performed by piercing live mouse cells with FIB-sharpened micropipettes suggest the design is sturdy for biological piercing applications.

Keywords: -----


Rodriguez-Segui, S. A., Pla, M., Engel, E., Planell, J. A., Martinez, E., Samitier, J., (2009). Influence of fabrication parameters in cellular microarrays for stem cell studies Journal of Materials Science: Materials in Medicine 20, (7), 1525-1533

Lately there has been an increasing interest in the development of tools that enable the high throughput analysis of combinations of surface-immobilized signaling factors and which examine their effect on stem cell biology and differentiation. These surface-immobilized factors function as artificial microenvironments that can be ordered in a microarray format. These microarrays could be useful for applications such as the study of stem cell biology to get a deeper understanding of their differentiation process. Here, the evaluation of several key process parameters affecting the cellular microarray fabrication is reported in terms of its effects on the mesenchymal stem cell culture time on these microarrays. Substrate and protein solution requirements, passivation strategies and cell culture conditions are investigated. The results described in this article serve as a basis for the future development of cellular microarrays aiming to provide a deeper understanding of the stem cell differentiation process.

Keywords: Bone-marrow, Protein microarrays, Progenitor cells, Differentiation, Surfaces, Growth, Biomaterials, Commitment, Pathways, Culture media


Kirchhof, K., Hristova, K., Krasteva, N., Altankov, G., Groth, T., (2009). Multilayer coatings on biomaterials for control of MG-63 osteoblast adhesion and growth Journal of Materials Science: Materials in Medicine 20, (4), 897-907

Here, the layer-by-layer technique (LbL) was used to modify glass as model biomaterial with multilayers of chitosan and heparin to control the interaction with MG-63 osteoblast-like cells. Different pH values during multilayer formation were applied to control their physico-chemical properties. In the absence of adhesive proteins like plasma fibronectin (pFN) both plain layers were rather cytophobic. Hence, the preadsorption of pFN was used to enhance cell adhesion which was strongly dependent on pH. Comparing the adhesion promoting effects of pFN with an engineered repeat of the FN III fragment and collagen I which both lack a heparin binding domain it was found that multilayers could bind pFN specifically because only this protein was capable of promoting cell adhesion. Multilayer surfaces that inhibited MG-63 adhesion did also cause a decreased cell growth in the presence of serum, while an enhanced adhesion of cells was connected to an improved cell growth.

Keywords: Cell-adhesion, Polyelectrolyte multilayers, Substratum chemistry, Surface-properties, Fibroblast-growth, Fibronectin, Polymers, Chitosan, Polysaccharides, Wettability


Fonollosa, J., Carmona, M., Santander, J., Fonseca, L., Moreno, M., Marco, S., (2009). Limits to the integration of filters and lenses on thermoelectric IR detectors by flip-chip techniques Sensors and Actuators A: Physical 149, (1), 65-73

In the trend towards miniaturization, a detector module containing multiple IR sensor channels is being built and characterized. In its final form it contains thermopiles, narrow band filters and Fresnel lenses. An important feature of such module is the assembly by flip-chip of the IR filters on top of the thermopiles. The performance of the filter-thermopile ensemble has been assessed by physical simulation and experiments and it has been optimized by the use of an empirically validated model. It has been found that integration of filters (or lenses) too close to the IR detector may lead to degraded performance due to thermal coupling. The impact and extent of this degradation has been thoroughly explored, being the main parameter the distance between the IR sensor and the filter. To avoid such detrimental effects a possibility is to set the device in vacuum conditions, obtaining an improved output response and avoiding the influence of the filters. Another way is to increase the solder joint height. Beyond a certain height, the filter is considered to be isolated from the thermopile.

Keywords: Assembly, Infrared sensor, Infrared filter, Fresnel lenses, FEM simulation, Optimization


Puig, F., Gavara, N., Sunyer, R., Carreras, A., Farre, R., Navajas, D., (2009). Stiffening and contraction induced by dexamethasone in alveolar epithelial cells Experimental Mechanics 49, (1), 47-55

The structural integrity of the alveolar monolayer, which is compromised during lung inflammation, is determined by the balance between cell-cell and cell-matrix tethering forces and the centripetal forces owing to cell viscoelasticity and contraction. Dexamethasone is an anti-inflammatory glucocorticoid with protective effects in lung injury. To determine the effects of Dexamethasone on the stiffness and contractility of alveolar epithelial cells. Cell stiffness (G') and average traction exerted by the cell (T) were measured by magnetic twisting cytometry and by traction microscopy, respectively. A549 cells were treated 24 h with Dexamethasone (1 mu M) or vehicle (control). G' and T were measured before and 5 min after challenge with the inflammatory mediator Thrombin (0.5 U/ml). Changes induced by Dexamethasone in actin cytoskeleton polymerization were assessed by the fluorescent ratio between F-actin and G-actin obtained by staining cells with phalloidin and DNase I. Dexamethasone significantly increased G' and T by 56% (n = 11; p < 0.01) and by 80% (n = 17; p < 0.05), respectively. Dexamethasone also increased F/G-actin ratio from 2.68 +/- 0.07 to 2.96 +/- 0.09 (n = 10; p < 0.05). The relative increase in stiffness and contraction induced by Thrombin in control cells was significantly (p < 0.05) reduced by Dexamethasone treatment: from 190 to 98% in G' and from 318 to 105% in T. The cytoskeleton remodelling and the increase in cell stiffness and contraction induced by Dexamethasone could account for its protective effect in the alveolar epithelium when subjected to inflammatory challenge.

Keywords: Cell mechanics, Cytoskeleton, Magnetic twisting cytometry, Traction microscopy, Respiratory diseases


Caballero, D., Samitier, J., Errachid, A., (2009). Submerged nanocontact printing (SnCP) of thiols Journal of Nanoscience and Nanotechnology 9, (11), 6478-6482

Biological patterned surfaces having sub-micron scale resolution are of great importance in many fields of life science and biomedicine. Different techniques have been proposed for surface patterning at the nanoscale. However, most of them present some limitations regarding the patterned area size or are time-consuming. Micro/nanocontact printing is the most representative soft lithography-based technique for surface patterning at the nanoscale. Unfortunately, conventional micro/nanocontact printing also suffers from problems such as diffusion and stamp collapsing that limit pattern resolution. To overcome these problems, a simple way of patterning thiols under liquid media using submerged nanocontact printing (SnCP) over large areas (similar to cm(2)) achieving nanosize resolution is presented. The technique is also low cost and any special equipment neither laboratory conditions are required. Nanostructured poly(dimethyl siloxane) stamps are replicated from commercially available digital video disks. SnCP is used to stamp patterns of 200 nm 1-octadecanethiol lines in liquid media, avoiding ink diffusion and stamp collapsing, over large areas on gold substrates compared with conventional procedures. Atomic force microscopy measurements reveal that the patterns have been successfully transferred with high fidelity. This is an easy, direct, effective and low cost methodology for molecule patterning immobilization which is of interest in those areas that require nanoscale structures over large areas, such as tissue engineering or biosensor applications.

Keywords: Submerged Nanocontact Printing, Replica Molding, Nanopatterning, Large Area, Dip-pen nanolithography, High-aspect-ratio, Soft lithography, Submicronscale, Nanoimprint lithography, Thin-film, Surfaces, Fabrication, Proteins, Nanofabrication


Merolli, A., Rocchi, L., Catalano, F., Planell, J., Engel, E., Martinez, E., Sbernardori, M. C., Marceddu, S., Leali, P. T., (2009). In vivo regeneration of rat sciatic nerve in a double-halved stitch-less guide: a pilot-study Microsurgery 29, (4), 310-318

It is about 20 years that tubular nerve guides have been introduced into clinical practice as a reliable alternative to autograft, in gaps not-longer-than 20 mm, bringing the advantage of avoiding donor site sacrifice and morbidity. There are limitations in the application of tubular guides. First, tubular structure in itself makes surgical implantation difficult; second, stitch sutures required to secure the guide may represent a site of unfavorable fibroblastic reaction; third, maximum length and diameter of the guide correlate with the occurrence of a poorer central vascularization of regenerated nerve. We report on the in vivo testing of a new concept of nerve-guide (named NeuroBox) which is double-halved, not-degradable, rigid, and does not require any stitch to be held in place, employing acrylate glue instead. Five male Wistar rats had the new guide implanted in a 4-mm sciatic nerve defect; two guides incorporated a surface constituted of microtrenches aligned longitudinally. Further five rats had the 4-mm gap left without repair. Contralateral intact nerves were used as controls. After 2 months, nerve regeneration occurred in all animals treated by the NeuroBox; fine blood vessels were well represented. There was no regeneration in the un-treated animals. Even if the limited number of animals does not allow to draw definitive conclusions, some result can be highlighted: an easy surgical technique was associated with the box-shaped guide and acrylate glue was easily applied; an adequate intraneural vascularization was found concurrently with the regeneration of the nerve and no adverse fibroblastic proliferation was present.

Keywords: Peripheral-nerve, Polyglycolic acid, Guidance cues, Collagen tube, Median nerve, Repair, Growth, Cyanoacrylate, Complications, Anastomosis


Martinez, E., Engel, E., Planell, J. A., Samitier, J., (2009). Effects of artificial micro- and nano-structured surfaces on cell behaviour Annals of Anatomy-Anatomischer Anzeiger 191, (1), 126-135

Substrate topography, independently of substrate chemistry, has been reported to have significant effects on cell behaviour. Based on the use of fabrication techniques developed by the silicon microtechnology industry, numerous studies can now be found in the literature analyzing cell behaviour as to various micro- and nanofeatures such as lines, wells, holes and more. Most of these works have been found to relate the micro- and nano-sized topographical features with cell. orientation, migration, morphology and proliferation. In recent papers, even the influence of substrate nanotopography on cell gene expression and differentiation has been pointed out. However, despite the large number of papers published on this topic, significant general trends in cell behaviour are difficult to establish due to differences in cell type, substrate material, feature aspect-ratio, feature geometry and parameters measured. This paper intends to compile and review the relevant existing information on the behaviour of cells on micro- and nano-structured artificial substrates and analyze possible general behavioural trends.

Keywords: Microstructure, Topography, Cell behaviour, Cell morphology, Cell orientation


Engel, E., Martinez, E., Mills, C. A., Funes, M., Planell, J. A., Samitier, J., (2009). Mesenchymal stem cell differentiation on microstructured poly (methyl methacrylate) substrates Annals of Anatomy-Anatomischer Anzeiger 191, (1), 136-144

Recent studies on 2D substrates have revealed the importance of surface properties in affecting cell behaviour. In particular, surface topography appears to influence and direct cell migration. The development of new technologies of hot embossing and micro-imprinting has made it possible to study cell interactions with controlled micro features and to determine how these features can affect cell behaviour. Several studies have been carried out on the effect of microstructures on cell adhesion, cell guidance and cell proliferation. However, there is still a lack of knowledge on how these features affect mesenchymal stem cell differentiation. This study was designed to evaluate whether highly controlled microstructures on PMMA could induce rMSC differentiation into an osteogenic lineage. Structured PMMA was seeded with rMSC and cell number; cell morphology and cell differentiation were evaluated. Results confirm that microstructures not only affect cell proliferation and alignment but also have a synergistic effect with osteogenic medium on rMSC differentiation into mature osteoblasts.

Keywords: Mesenchymal stem cells, Osteoblasts, Topography, Microstructures


Gustavsson, J., Zine, N., Vocanson, F., Engel, E., Planell, J., Bausells, J., Samitier, J., Errachid, A., (2009). Characterization of potassium-selective field effect transistors based on 1,3-(di-4-oxabutanol)-calix[4]arene-crown-5 as ionophore Sensor Letters 7, (5), 795-800

The ionophore 1,3-(di-4-oxabutanol)-calix[4]arene-crown-5 has been synthesized and used in order to develop a plasticized poly(vinyl-chloride) membrane for potassium ion detection using ion-selective field-effect transistors (ISFETs). The composition of the polymeric membrane was optimized with respect to the plasticizer being used, with the best response obtained using bis(2ethylhexyl)sebacate. The developed MEMFETs exhibit a good linear response of 52.4±1.6 mV per decade within the concentration range of 2.0 x 10-4 M to 1.0 x 10-1 M and response time of 30 seconds. The detection limit was determined to be 4 x 10-5 M and also the selectivity coefficients for possible interfering cations/anions were evaluated. The MEMFETs are suitable for use in the pH range of 3-11.

Keywords: Calix[4]arene, ISFET, MEMFET, Potassium


Casals, A., Frigola, M., Amat, J., (2009). Robotics, a valuable tool in surgery Revista Iberoamericana de Automatica e Informatica Industrial 6, (1), 5-19

Continuous advances on diagnostic techniques based on medical images, as well as the incorporation of new techniques in surgical instruments are progressively changing the new surgical procedures. Also, new minimally invasive techniques, which are currently highly consolidated, have produced significant advances, both from the technological and from the surgical treatment perspectives. The limitations that the manual realization of surgical interventions implies, in what refers to precision and accessibility, can be tackled with the help of robotics. In the same way, sensor based robot control techniques are opening new possibilities for the introduction of more improvements in these procedures, either relying on teleoperation, in which the surgeon and the robot establish their best synergy to get the optimal results, or by means of the automation of some specific actions or tasks. In this article the effect of robotics in the evolution of surgical techniques is described. Starting with a review of the robotics application fields, the article continues analyzing the methods and technologies involved in the process of robotizing surgical procedures, as well as the surgeon-robot interaction systems.

Keywords: Robotics, Medical Applications, Teleoperation, Biomedical Systems, Computer Aided Surgery, Human-Machine Interaction


Colomer-Farrarons, J., Miribel-Catala , P., Saiz-Vela, A., Samitier, J., (2009). A 60 uW low-power low-voltage power management unit for a self-powered system based on low-cost piezoelectric powering generators Proceedings of the 35th European Solid-State Circuits Conference. ESSCIRC 2009 35th European Solid-State Circuits Conference. ESSCIRC 2009 (ed. Tsoukalas, D., Papananos, Y.), IEEE (Athens, Greece) , 280-283

This paper presents the architecture of a novel implementation of an integrated self-powered system based on piezoelectric vibrations in a 0.13Îum technology. The electromechanical transduction is performed by using a low-cost commercial piezoelectric, working at low frequencies, with voltages up to 2.5V. The system is conceived as a System In a Package (SiP). The full integrated system is adapted to work with low-voltage and low-power conditions. The full custom power management circuit is used to charge a storage capacitor (super capacitor), from which the stored energy will be used to power, by controlled cycles of discharge operation of a very low power wireless sensor node that could be used in heavy machinery monitoring. Each circuitry block of the power management circuitry is presented and discussed. The simulated studies are fully validated by experimental tests. The experimental consumption of the power management unit is 67μW, approach to the theoretical expected value of 60ÎuW.

Keywords: -----


Correa, R., Laciar, E., Arini, P., Jané, R., (2009). Analysis of QRS loop changes in the beat-to-beat vectocardiogram of ischemic patients undergoing PTCA Engineering in Medicine and Biology Society (EMBC) 31st Annual International Conference of the IEEE , IEEE (Minneapolis, USA) , 1750-1753

In the present work, we have studied dynamic changes of QRS loop in the Vectocardiogram (VCG) of 80 patients that underwent Percutaneous Transluminal Coronary Angioplasty (PTCA). The VCG was obtained for each patient using the XYZ orthogonal leads of their electrocardiographic (ECG) records acquired before, during and after PTCA procedure. In order to analyze the variations of VCG, it has been proposed in this study the following parameters a) Maximum module of the cardiac depolarization vector, b) Volume, c) and Area of vectocardiographic loop corresponding to the QRS complex of each beat, d) Maximum distance between Centroid and the Loop, e) Angle between the XY plane and the Optimum Plane, f) Relation between the Area and Perimeter. The results obtained indicate that the parameters proposed show significant statistics differences (p-value<0.05) before, during (with some exceptions at the first minute of balloon inflation) and after PTCA. We conclude that the variations observed in the proposed parameters correctly represent not only the morphological changes in the depolarization VCG but also they reflect the modifications in the levels of cardiac ischemia induced by PTCA.

Keywords: -----


Diez, P. F., Mut, V., Laciar, E., Torres, A., Avila, E., (2009). Application of the empirical mode decomposition to the extraction of features from EEG signals for mental task classification Engineering in Medicine and Biology Society (EMBC) 31st Annual International Conference of the IEEE , IEEE (Minneapolis, USA) , 2579-2582

In this work, it is proposed a technique for the feature extraction of electroencephalographic (EEG) signals for classification of mental tasks which is an important part in the development of Brain Computer Interfaces (BCI). The Empirical Mode Decomposition (EMD) is a method capable to process nonstationary and nonlinear signals as the EEG. This technique was applied in EEG signals of 7 subjects performing 5 mental tasks. For each mode obtained from the EMD and each EEG channel were computed six features: Root Mean Square (RMS), Variance, Shannon Entropy, Lempel-Ziv Complexity Value, and Central and Maximum Frequencies, obtaining a feature vector of 180 components. The Wilks' lambda parameter was applied for the selection of the most important variables reducing the dimensionality of the feature vector. The classification of mental tasks was performed using Linear Discriminate Analysis (LD) and Neural Networks (NN). With this method, the average classification over all subjects in database was 91±5% and 87±5% using LD and NN, respectively. It was concluded that the EMD allows getting better performances in the classification of mental tasks than the obtained with other traditional methods, like spectral analysis.

Keywords: -----


Morgenstern, C., Schwaibold, M., Randerath, W., Bolz, A., Jané, R., (2009). Automatic differentiation of obstructive and central hypopneas with esophageal pressure measurement during sleep Engineering in Medicine and Biology Society (EMBC) 31st Annual International Conference of the IEEE , IEEE (Minneapolis, USA) 2009, 7102-7105

The differentiation between obstructive and central respiratory events is one of the most recurrent tasks in the diagnosis of sleep disordered breathing. Esophageal pressure measurement is the gold-standard method to assess respiratory effort and identify these events. But as its invasiveness discourages its use in clinical routine, non-invasisve systems have been proposed for differentiation. However, their adoption has been slow due to their limited clinical validation, as the creation of manual, gold-standard validation sets by human experts is a cumbersome procedure. In this study, a new system is proposed for an objective automatic, gold-standard differentiation between obstructive and central hypopneas with the esophageal pressure signal. First, an overall of 356 hypopneas of 16 patients were manually scored by a human expert to create a gold-standard validation set. Then, features were extracted from each hypopnea to train and test classifiers (Discriminant Analysis, Support Vector Machines and adaboost classifiers) to differentiate between central and obstructive hypopneas with the gold-standard esophageal pressure signal. The automatic differentiation system achieved promising results, with a sensitivity of 0.88, a specificity of 0.93 and an accuracy of 0.90. Hence, this system seems promising for an automatic, gold-standard differentiation between obstructive and central hypopneas.

Keywords: -----


Marco, S., Pomareda, V., Pardo, A., Kessler, M., Goebel, J., Mueller, G., (2009). Blind source separation for ion mobility spectra Olfaction and Electronic Nose: Proceedings of the 13th International Symposium on Olfaction and Electronic Nose 13th International Symposium on Olfaction and the Electronic Nose (ed. Pardo, M., Sberveglieri, G.), Amer Inst Physics (Brescia, Italy) 1137, 551-553

Miniaturization is a powerful trend for smart chemical instrumentation in a diversity of applications.. It is know that miniaturization in IMS leads to a degradation of the system characteristics. For the present work, we are interested in signal processing solutions to mitigate limitations introduced by limited drift tube length that basically involve a loss of chemical selectivity. While blind source separation techniques (BSS) are popular in other domains, their application for smart chemical instrumentation is limited. However, in some conditions, basically linearity, BSS may fully recover the concentration time evolution and the pure spectra with few underlying hypothesis. This is extremely helpful in conditions where non-expected chemical interferents may appear, or unwanted perturbations may pollute the spectra. SIMPLISMA has been advocated by Harrington et al. in several papers. However, more modem methods of BSS for bilinear decomposition with the restriction of positiveness have appeared in the last decade. In order to explore and compare the performances of those methods a series of experiments were performed.

Keywords: Ion Mobility Spectrometry (IMS), Blind Source Separation (BSS), Multivariate Analysis, SIMPLISMA, MCR, Non-Negative Matrix Factorization (NMF)


Falasconi, M., Gutierrez, A., Auffarth, B., Sberveglieri, G., Marco, S., (2009). Cluster analysis of the rat olfactory bulb activity in response to different odorants Olfaction and Electronic Nose: Proceedings of the 13th International Symposium on Olfaction and Electronic Nose 13th International Symposium on Olfaction and the Electronic Nose (ed. Pardo, M., Sberveglieri, G.), Amer Inst Physics (Brescia, Italy) 1137, 169-172

With the goal of deepen in the understanding of coding of chemical information in the olfactory system, a large data set consisting of rat's olfactory bulb activity values in response to several different volatile compounds has been analyzed by fuzzy c-means clustering methods. Clustering should help to discover groups of glomeruli that are similary activated according to their response profiles across the odorants. To investigate the significance of the achieved fuzzy partitions we developed and applied a novel validity approach based on cluster stability. Our results show certain level of glomerular clustering in the olfactory bulb and indicate that exist a main chemo-topic subdivision of the glomerular layer in few macro-area which are rather specific to particular functional groups of the volatile molecules.

Keywords: Olfactory bulb, 2-deoxyglucose mapping, Olfactory coding, Cluster analysis, Cluster validity


Colomer-Farrarons, J., Miribel-Catala , P., Rodriguez, I., Samitier, J., (2009). CMOS front-end architecture for in-vivo biomedical implantable devices 35th Annual Conference of IEEE Industrial Electronics (IECON 2009) 35th Annual Conference of IEEE Industrial Electronics (IECON 2009) , IEEE (Porto, Portugal) , 4401-4408

An integrated front-end architecture for In-Vivo detection is presented. The system is conceived to be implanted under the human skin. The powering and communication between this device and an external primary transmitter are based on an inductive link. The presented architecture is oriented to two different approaches, defining a True/False alarm system, based on amperometric or impedance biosensors. The particular case of the amperometric sensor is used to validate the architecture in terms of different integrated modules fabricated in a 0.13μm technology. A potentiostat amplifier has been integrated to control an amperometric biosensor as well as a current sensing method based on a transimpedance amplifier is used to measure the current. It is also introduced the electronics designed for the bio-impedance case.

Keywords: -----


Garde, A., Sornmo, L., Jané, R., Giraldo, B. F., (2009). Correntropy-based analysis of respiratory patterns in patients with chronic heart failure Engineering in Medicine and Biology Society (EMBC) 31st Annual International Conference of the IEEE , IEEE (Minneapolis, USA) , 4687-4690

A correntropy-based technique is proposed for the analysis and characterization of respiratory flow signals in chronic heart failure (CHF) patients with both periodic and nonperiodic breathing (PB and nPB), and healthy subjects. Correntropy is a novel similarity measure which provides information on temporal structure and statistical distribution simultaneously. Its properties lend itself to the definition of the correntropy spectral density (CSD). An interesting result from CSD-based spectral analysis is that both the respiratory frequency and modulation frequency can be detected at their original positions in the spectrum without prior demodulation of the flow signal. The respiratory pattern is characterized by a number of spectral parameters extracted from the respiratory and modulation frequency bands. The results show that the power of the modulation frequency band offers excellent performance when classifying CHF patients versus healthy subjects, with an accuracy of 95.3%, and nPB patients versus healthy subjects with 90.7%. The ratio between the power in the modulation and respiration frequency bands provides the best results classifying CHF patients into PB and nPB, with an accuracy of 88.9%.

Keywords: -----


Arizmendi, C., Romero, E., Alquezar, R., Caminal, P., Díaz, I., Benito, S., Giraldo, B. F., (2009). Data mining of patients on weaning trials from mechanical ventilation using cluster analysis and neural networks Engineering in Medicine and Biology Society (EMBC) 31st Annual International Conference of the IEEE , IEEE (Minneapolis, USA) , 4343-4346

The process of weaning from mechanical ventilation is one of the challenges in intensive care. 149 patients under extubation process (T-tube test) were studied: 88 patients with successful trials (group S), 38 patients who failed to maintain spontaneous breathing and were reconnected (group F), and 23 patients with successful test but that had to be reintubated before 48 hours (group R). Each patient was characterized using 8 time series and 6 statistics extracted from respiratory and cardiac signals. A moving window statistical analysis was applied obtaining for each patient a sequence of patterns of 48 features. Applying a cluster analysis two groups with the majority dataset were obtained. Neural networks were applied to discriminate between patients from groups S, F and R. The best performance obtained was 84.0% of well classified patients using a linear perceptron trained with a feature selection procedure (that selected 19 of the 48 features) and taking as input the main cluster centroid. However, the classification baseline 69.8% could not be improved when using the original set of patterns instead of the centroids to classify the patients.


Colomer-Farrarons, J., Miribel-Catala, P. L., Samitier, J., Arundell, M., Rodriguez, I., (2009). Design of a miniaturized electrochemical instrument for in-situ O/sub 2/ monitoring Sensors and Signal Conditioning VLSI Circuits and Systems IV , SPIE (Desdren, Germany) 7363, 73630A

The authors are working toward the design of a device for the detection of oxygen, following a discrete and an integrated instrumentation implementation. The discrete electronics are also used for preliminary analysis, to confirm the validity of the conception of system, and its set-up would be used in the characterization of the integrated device, waiting for the chip fabrication. This paper presents the design of a small and portable potentiostat integrated with electrodes, which is cheap and miniaturized, which can be applied for on-site measurements for the simultaneous detection of O/sub 2/ and temperature in water systems. As a first approach a discrete PCB has been designed based on commercial discrete electronics and specific oxygen sensors. Dissolved oxygen concentration (DO) is an important index of water quality and the ability to measure the oxygen concentration and temperature at different positions and depths would be an important attribute to environmental analysis. Especially, the objective is that the sensor and the electronics can be integrated in a single encapsulated device able to be submerged in environmental water systems and be able to make multiple measurements. For our proposed application a small and portable device is developed, where electronics and sensors are miniaturized and placed in close proximity to each other. This system would be based on the sensors and electronics, forming one module, and connected to a portable notebook to save and analyze the measurements on-line. The key electronics is defined by the potentiostat amplifier, used to fix the voltage between the working (WE) and reference (RE) electrodes following an input voltage (Vin). Vin is a triangular signal, programmed by a LabView/sup c / interface, which is also used to represent the CV transfers. To obtain a smaller and compact solution the potentiostat amplifier has also been integrated defining a full custom ASIC amplifier, which is in progress, looking for a point-of-care device. These circuits have been designed with a 0.13 mu m technology from ST Microelectronics through the CMP-TIMA service.

Keywords: Amplifiers, Application specific integrated circuits, Chemical sensors, Electrodes, Portable instruments, Temperature measurement, Water sources


Barreiros dos Santos, M., Sporer, C., Sanvicens, N., Pascual, N., Errachid, A., Martinez, E., Marco, M. P., Teixeira, V., Samiter, J., (2009). Detection of pathogenic Bacteria by Electrochemical Impedance Spectroscopy: Influence of the immobilization strategies on the sensor performance Procedia Chemistry 23rd Eurosensors Conference (ed. Brugger, J., Briand, D.), Elsevier Science, BV (Lausanne, Switzerland) 1, 1291-1294

Electrochemical impedance spectroscopy (EIS) is applied to detect pathogenic E. coli O157:H7 bacteria via a label free immunoassay-based detection method. Polyclonal anti-E.coli antibodies (PAb) are immobilized onto gold electrodes following two different strategies, via chemical bond formation between antibody amino groups and a carboxylic acid containing self-assembled molecular monolayer (SAM) and alternatively by linking a biotinylated anti-E. coli to Neutravidin on a mixed-SAM. Impedance spectra for sensors of both designs for increasing concentrations of E. coli are recorded in phosphate buffered saline (PBS). The Nyquist plots can be modeled with a Randle equivalent circuit, identifying the charge transfer resistance RCT as the relevant concentration dependent parameter. Sensors fabricated from both designs are able to detect very low concentration of E. coli with limits of detection as low as 10-100 cfu/ml. The influence of the different immobilization protocols on the sensor performance is evaluated in terms of sensitivity, dynamic range and resistance against nonspecific absorption.

Keywords: Bacteria detection, Biosensors, E-coli, Impedance spectroscopy


Orosco, L., Laciar, E., Correa, A. G., Torres, A., Graffigna, J. P., (2009). An epileptic seizures detection algorithm based on the empirical mode decomposition of EEG Engineering in Medicine and Biology Society (EMBC) 31st Annual International Conference of the IEEE , IEEE (Minneapolis, USA) , 2651-2654

Epilepsy is a neurological disorder that affects around 50 million people worldwide. The seizure detection is an important component in the diagnosis of epilepsy. In this study, the Empirical Mode Decomposition (EMD) method was proposed on the development of an automatic epileptic seizure detection algorithm. The algorithm first computes the Intrinsic Mode Functions (IMFs) of EEG records, then calculates the energy of each IMF and performs the detection based on an energy threshold and a minimum duration decision. The algorithm was tested in 9 invasive EEG records provided and validated by the Epilepsy Center of the University Hospital of Freiburg. In 90 segments analyzed (39 with epileptic seizures) the sensitivity and specificity obtained with the method were of 56.41% and 75.86% respectively. It could be concluded that EMD is a promissory method for epileptic seizure detection in EEG records.

Keywords: -----


Perera, A., Pardo, A., Barrettino, D., Hierlermann, A., Marco, S., (2009). Evaluation of fish spoilage by means of a single metal oxide sensor under temperature modulation Olfaction and Electronic Nose: Proceedings of the 13th International Symposium on Olfaction and Electronic Nose 13th International Symposium on Olfaction and Electronic Nose (ed. Pardo, M., Sberveglieri, G.), Amer Inst Physics (Brescia, Italy) 1137, 483-486

In this paper the feasibility of using metal oxide gas sensor technology for evaluating spoilage process for sea bream (Sparus Aurata) is explored. It is shown that a single sensor under temperature modulation is able to find a correlation with the fish spoilage process

Keywords: Gas sensors, Electrochemical sensors, Chromatography


Sarlabous, L., Torres, A., Fiz, J. A., Gea, J., Martinez-Llorens, J. M., Jané, R., (2009). Evaluation of the respiratory muscular function by means of diaphragmatic mechanomyographic signals in COPD patients Engineering in Medicine and Biology Society (EMBC) 31st Annual International Conference of the IEEE , IEEE (Minneapolis, USA) , 3925-3928

The study of mechanomyographic (MMG) signals of respiratory muscles is a promising technique in order to evaluate the respiratory muscular effort. In this work MMG signals from left and right hemidiaphragm (MMGl and MMGr, respectively) acquired during a respiratory protocol have been analyzed. The acquisition of both MMG signals was carried out by means of two capacitive accelerometers placed on both left and right sides of the costal wall. The signals were recorded in a group of six patients with Chronic Obstructive Pulmonary Disease (COPD). It has been observed that with the increase of inspiratory pressure it takes place an increase of the amplitude and a displacement toward low frequencies in both left and right MMG signals. Furthermore, it has been seen that the increase of amplitude and the decrease of frequency in MMG signals are more pronounced in severe COPD patients. This behaviour is similar for both MMGl and MMGr signals. Results suggest that the use of MMG signals could be potentially useful for the evaluation of the respiratory muscular function in COPD patients.

Keywords: -----


Padilla, M., Pereral, A., Montoliu, I., Chaudry, A., Persaud, K., Marco, S., (2009). Improving drift correction by double projection preprocessing in gas sensor arrays Olfaction Electronic Nose: Proceedings of the 13th International Symposium on Olfaction and Electronic Nose 13th International Symposium on Olfaction and the Electronic Nose (ed. Pardo, M., Sberveglieri, G.), Amer Inst Physics (Brescia, Italy) 1137, 101-104

It is well known that gas chemical sensors are strongly affected by drift. Drift consist on changes in sensors responses along the time, which make that initial statistical models for gas or odor recognition become useless after a period of time of about weeks. Gas sensor arrays based instruments periodically need calibrations that are expensive and laborious. Many different statistical methods have been proposed to extend time between recalibrations. In this work, a simple preprocessing technique based on a double projection is proposed as a prior step to a posterior drift correction algorithm (in this particular case, Direct Orthogonal Signal Correction). This method highly improves the time stability of data in relation with the one obtained by using only such drift correction method. The performance of this technique will be evaluated on a dataset composed by measurements of three analytes by a polymer sensor array along ten months.

Keywords: Drift, Direct orthogonal signal correction


Colomer, J., Miribel-Catala , P., Saiz-Vela, A., Rodriguez, I., Samitier, J., (2009). A low power CMOS biopotentiostat in a low-voltage 0.13 um digital technology 52nd IEEE International Midwest Symposium on Circuits and Systems (MWSCAS) 52nd IEEE International Midwest Symposium on Circuits and Systems (MWSCAS) , IEEE (Cancun, Mexico) , 172-175

A biopotentiostat amplifier, for in-vivo applications, has been designed using a low-voltage lowpower technology of 0.13μm@1.2V. The purpose of the designed bio-amplifier is oriented to sense the capacitive variations of electrochemical biosensor experiments at low frequencies. The designed amplifier seeks to function with a very small power consumption and occupies a very small area, compared with other designs, looking for an in-vivo application. It occupies an area of 327μm × 260μm, and has an average power consumption of 51.2 μW. The performance of the bio-amplifier has been simulated and experimentally validated.

Keywords: -----


Otero, J., Puig-Vidal, M., Frigola, M., Casals, A., (2009). Micro-to-nano optical resolution in a multirobot nanobiocharacterization station 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2009 IEEE RSJ International Conference on Intelligent Robots and Systems , IEEE (St. Louis, USA) , 5357-5362

A multi-robot cooperation station for nano-bio characterization of biological specimens is presented. The station is composed of two long travel range and high resolution robots equipped with self-sensing nanoprobes that are able to cooperate with each other and with standard AFM systems, over a common sample. The robots are guided by the use of an upright high-depth-of-field optical microscope to perform complex nano-bio characterization experiments. To achieve the required precision between the two robots reference frames, specific image processing techniques are needed. One of the tips is dedicated to acquire the topography of the sample at nano scale while the second probe performs the biocharacterization experiments. The obtained results show that the two robots can cooperate within the required resolution in bacterial nanomechanical characterization while high resolution topographic images are acquired.

Keywords: AFM


Calvo, D., Salvador, J. P., Tort, N., Centi, F., Marco, M. P., Marco, S., (2009). Multidetection of anabolic androgenic steroids using immunoarrays and pattern recognition techniques Olfaction and Electronic Nose: Proceedings of the 13th International Symposium on Olfaction and Electronic Nose 13th International Symposium on Olfaction and the Electronic Nose (ed. Pardo, M., Sberveglieri, G.), Amer Inst Physics (Brescia, Italy) 1137, 547-550

A first step towards the multidetection of anabolic androgenic steroids by Enzyme-linked immunosorbent assays (ELISA) has been performed in this study. This proposal combines an array of classical ELISA assays with different selectivities and multivariate data analysis techniques. Data has been analyzed by principal component analysis in conjunction with a k-nearest line classifier has been used. This proposal allows to detect simultaneously four different compounds in the range of concentration from 10(-1.5) to 10(3) mM with a total rate of 90.6% of correct detection.

Keywords: Immunoarray, Anabolic androgenic steroid, Multidetection, Pattern recognition, K-nearlest line


Sarlabous, L., Torres, A., Fiz, J. A., Gea, J., Galdiz, J. B., Jané, R., (2009). Multistate Lempel-Ziv (MLZ) index interpretation as a measure of amplitude and complexity changes Engineering in Medicine and Biology Society (EMBC) 31st Annual International Conference of the IEEE , IEEE (Minneapolis, USA) , 4375-4378

The Lempel-Ziv complexity (LZ) has been widely used to evaluate the randomness of finite sequences. In general, the LZ complexity has been used to determine the complexity grade present in biomedical signals. The LZ complexity is not able to discern between signals with different amplitude variations and similar random components. On the other hand, amplitude parameters, as the root mean square (RMS), are not able to discern between signals with similar power distributions and different random components. In this work, we present a novel method to quantify amplitude and complexity variations in biomedical signals by means of the computation of the LZ coefficient using more than two quantification states, and with thresholds fixed and independent of the dynamic range or standard deviation of the analyzed signal: the Multistate Lempel-Ziv (MLZ) index. Our results indicate that MLZ index with few quantification levels only evaluate the complexity changes of the signal, with high number of levels, the amplitude variations, and with an intermediate number of levels informs about both amplitude and complexity variations. The study performed in diaphragmatic mechanomyographic signals shows that the amplitude variations of this signal are more correlated with the respiratory effort than the complexity variations. Furthermore, it has been observed that the MLZ index with high number of levels practically is not affected by the existence of impulsive, sinusoidal, constant and Gaussian noises compared with the RMS amplitude parameter.

Keywords: -----


Dellaca, R. L., Gobbi, A., Govoni, L., Navajas, D., Pedotti, A., Farre, R., (2009). A novel simple Internet-based system for real time monitoring and optimizing home mechanical ventilation International Conference on Ehealth, Telemedicine, and Social Medicine: Etelemed 2009, Proceedings International Conference on eHealth, Telemedicine, and Social Medicine (ed. Conley E.C., Doarn, C., HajjamElHassani, A.), IEEE Compuer Soc (Cancun, Mexico) , 209-215

The dissemination of the available telemedicine systems for the optimization of home mechanical ventilation (HMV) is prevented by the need of complex infrastructures. We developed a device which, once connected to Internet through the mobile phone network, allows an authorized physician connected to Internet to monitor the ventilator signals and modify the settings in real-time without the need of external data servers. The system was evaluated during experiments performed by tele-controlling a mechanical ventilator in Barcelona from Milano. A bench study verified the reliability and robustness of the system while an in-vivo test showed that it was possible to monitor and tele-control the ventilator to maintain the oxygen saturation of a rat ventilated in Barcelona subjected to interventions. Given that the system avoids the need for any complex telemedicine architecture and allows an individual and independent ventilator tele-control, it can be a new helpful tool to optimize HMV.

Keywords: Home mechanical ventilation, Non-invasive mechanical ventilation, Telemedicine


Hernansanz, A., Amat, J., Casals, A., (2009). Optimization criterion for safety task transfer in cooperative robotics 14th International Conference on Advanced Robotics (ICAR) , IEEE (Munich, Germany) , 254-259

This paper presents a strategy for a cooperative multirobot system, constituting a virtual robot. The virtual robot is composed of a set of robotic arms acting as only one, transferring the execution of a teleoperated task from one to another when necessary. To decide which of the robots is the most suitable to execute the task at every instant, a multiparametric decision function has been defined. This function is based on a set of intrinsic and extrinsic evaluation indexes of the robot. Since the internal operation of the virtual robot must be transparent to the user, a control architecture has been developed.

Keywords: Control engineering computing, Manipulators, Multi-robot systems, Optimsation, Telerobotics, Virtual reality


Pairo, E., Marco, S., Perera, A., (2009). A preliminary study on the detection of transcription factor binding sites Biosignals 2009: Proceedings of the International Conference on Bio-Inspired Systems and Signal Processing 2nd International Conference on Bio-Inspired Systems and Signal Processing (ed. Encarnacao, P., Veloso, A.), Insticc-Inst Syst Technologies Information Control & Communication (Oporto, Portugal) , 506-509

Transcription starts when multiple proteins, known as transcription factors recognize and bind to transcription start site in DNA sequences. Since mutation in transcription factor binding sites are known to underlie diseases it remains a major challenge to identify these binding sites. Conversion from symbolic DNA to numerical sequences and genome data make it possible to construct a detector based on a numerical analysis of DNA binding sites. A subspace model for the TFBS is built. TFBS will show a very small distance to this particular subspace. Using this distance binding sites are distinguished from random sequences and from genome data.

Keywords: Transcription factors, Binding sites, Principal components analysis


Marco, S., Gutierrez-Galvez, A., (2009). Recent developments in the application of biologically inspired computation to chemical sensing Olfaction Electronic Nose: Proceedings of the 13th International Symposium on Olfaction and Electronic Nose 13th International Symposium on Olfaction and the Electronic Nose (ed. Pardo, M., Sberveglieri, G.), Amer Inst Physics (Brescia, Italy) 1137, 151-154

Biological olfaction outperforms chemical instrumentation in specificity, response time, detection limit, coding capacity, time stability, robustness, size, power consumption, and portability. This biological function provides outstanding performance due, to a large extent, to the unique architecture of the olfactory pathway, which combines a high degree of redundancy, an efficient combinatorial coding along with unmatched chemical information processing mechanisms. The last decade has witnessed important advances in the understanding of the computational primitives underlying the functioning of the olfactory system. In this work, the state of the art concerning biologically inspired computation for chemical sensing will be reviewed. Instead of reviewing the whole body of computational neuroscience of olfaction, we restrict this review to the application of models to the processing of real chemical sensor data.

Keywords: Computational Intelligence, Chemical Sensors


Montoliu, I., Pomareda, V., Kalms, A., Pardo, A., Gobel, J., Kessler, M., Muller, G., Marco, S., (2009). Resolution of ion mobility spectra for the detection of hazardous substances in real sampling conditions Olfaction and Electronic Nose: Proceedings of the 13th International Symposium on Olfaction and Electronic Nose 13th International Symposium on Olfaction and the Electronic Nose (ed. Pardo, M., Sberveglieri, G.), Amer Inst Physics (Brescia, Italy) 1137, 576-578

This work presents the possibilities offered by a blind source separation method such Multivariate Curve Resolution- Alternating Least Squares (MCR-ALS) in the analysis of Ion Mobility Spectra (IMS). Two security applications are analyzed in this context: the detection of TNT both in synthetic and real samples. Results obtained show the possibilities offered by the direct analysis of the drift time spectra when an appropriate resolution method is used.

Keywords: Ion Mobility Spectrometry, Multivariate Curve Resolution, Security, LIMS, MCR-ALS


Correa, L. S., Laciar, E., Mut, V., Torres, A., Jané, R., (2009). Sleep apnea detection based on spectral analysis of three ECG - Derived respiratory signals Engineering in Medicine and Biology Society (EMBC) 31st Annual International Conference of the IEEE , IEEE (Minneapolis, USA) , 4723-4726

An apnea detection method based on spectral analysis was used to assess the performance of three ECG derived respiratory (EDR) signals. They were obtained on R wave area (EDR1), heart rate variability (EDR2) and R peak amplitude (EDR3) of ECG record in 8 patients with sleep apnea syndrome. The mean, central, peak and first quartile frequencies were computed from the spectrum every 1 min for each EDR. For each frequency parameter a threshold-based decision was carried out on every 1 min segment of the three EDR, classifying it as 'apnea' when its frequency value was below a determined threshold or as 'not apnea' in other cases. Results indicated that EDR1, based on R wave area has better performance in detecting apnea episodes with values of specificity (Sp) and sensitivity (Se) near 90%; EDR2 showed similar Sp but lower Se (78%); whereas EDR3 based on R peak amplitude did not detect appropriately the apneas episodes reaching Sp and Se values near 60%.

Keywords: -----


Correa, R., Arini, P. D., Laciar, E., Laguna, P., Jané, R., (2009). Study of morphological parameters of QRS loop using singular value decomposition during ischemia induced by coronary angioplasty 36th Annual Computers in Cardiology Conference (CinC) 36th Annual Computers in Cardiology Conference (CinC) , IEEE (Park City, USA) 36, 693-696

In this work we studied dynamic changes of ventricular depolarization loop evolution based on the Singular Value Decomposition (SVD) technique of 80 patients that underwent Percutaneous Transluminal Coronary Angioplasty (PTCA). The 8 independent ECG leads are subjected to SVD technique and are used to construct a new representation of QRS-SVD loops. In order to analyze the variations of QRS-SVD loops before, during and after PTCA, we proposed the following parameters: Maximum Module of the Depolarization Vector, Planar Area, Maximum Distance between Centroid and the Loop, Angle between the S1S2 plane and the Optimum Plane and Ratio between the Area and Perimeter. The results indicated that the parameters proposed show significant statistics differences during and after PTCA procedure vs. control. We concluded that the variations in the QRS-SVD loop before, during and after PTCA at ventricular depolarization can be described correctly through the proposed parameters.

Keywords: -----


Garde, A., Giraldo, B. F., Jané, R., Sornmo, L., (2009). Time-varying respiratory pattern characterization in chronic heart failure patients and healthy subjects Engineering in Medicine and Biology Society (EMBC) 31st Annual International Conference of the IEEE , IEEE (Minneapolis, USA) , 4007-4010

Patients with chronic heart failure (CHF) with periodic breathing (PB) and Cheyne-Stokes respiration (CSR) tend to exhibit higher mortality and poor prognosis. This study proposes the characterization of respiratory patterns in CHF patients and healthy subjects using the envelope of the respiratory flow signal, and autoregressive (AR) time-frequency analysis. In time-varying respiratory patterns, the statistical distribution of the AR coefficients, pole locations, and the spectral parameters that characterize the discriminant band are evaluated to identify typical breathing patterns. In order to evaluate the accuracy of this characterization, a feature selection process followed by linear discriminant analysis is applied. 26 CHF patients (8 patients with PB pattern and 18 with non-periodic breathing pattern (nPB)) are studied. The results show an accuracy of 83.9% with the mean of the main pole magnitude and the mean of the total power, when classifying CHF patients versus healthy subjects, and 83.3% for nPB versus healthy subjects. The best result when classifying CHF patients into PB and nPB was an accuracy of 88.9%, using the coefficient of variation of the first AR coefficient and the mean of the total power.

Keywords: -----


Perera, A., Rock, F., Montoliu, I., Weimar, U., Marco, S., (2009). Total solvent amount and human panel test predictions using gas sensor fast chromatography and multivariate linear and non-linear processing Olfaction and Electronic Nose: Proceedings of the 13th International Symposium on Olfaction and Electronic Nose 13th International Symposium on Olfaction and the Electronic Nose (ed. Pardo, M., Sberveglieri, G.), Amer Inst Physics (Brescia, Italy) 1137, 572-573

Data from a Gas Sensor based Chromatography instrument is used in order to replicate output from a human panel and the estimation of the total solvent amount measured by and FID device in a packaging application. The system is trained on different packaging sample properties and validated with unseen combinations of materials, varnishes and production processes. This contribution will show the difficulties on the prediction of the output of the human panel, and the success on the prediction of the total amount of solvent in the sample

Keywords: Gas sensors, Solvent prediction


Montufar, E. B., Traykova, T., Schacht, E., Ambrosio, L., Santin, M., Planell, J. A., Ginebra, M. P., (2009). Self-hardening calcium deficient hydroxyapatite/gelatine foams for bone regeneration Journal of Materials Science-Materials in Medicine 22nd European Conference on Biomaterials , Springer Netherlands (Lausanne, Switzerland) 21, (3), 863-869

In this work gelatine was used as multifunctional additive to obtain injectable self-setting hydroxyapatite/gelatine composite foams for bone regeneration. The foaming and colloidal stabilization properties of gelatine are well known in food and pharmaceutical applications. Solid foams were obtained by foaming liquid gelatine solutions at 50A degrees C, followed by mixing them with a cement powder consisting of alpha tricalcium phosphate. Gelatine addition improved the cohesion and injectability of the cement paste. After setting the foamed paste transformed into a calcium deficient hydroxyapatite. The final porosity, pore interconnectivity and pore size were modulated by modifying the gelatine content in the liquid phase.

Keywords: Phosphate cement, Gelatin, Behavior


Rodriguez-Segui, S. A., Bucior, I., Burger, M. M., Errachid, A., Fernàndez-Busquets, X., (2009). Application of the quartz crystal microbalance to the study of multivalent carbohydrate-carbohydrate adhesion Sensor Letters 6th Maghreb-Europe Meeting on Materials and Their Applications for Devices and Physical, Chemical and Biological Sensors , AMER SCIENTIFIC PUBLISHERS (Rabat, Morocco) 7, (5), 782-787

Carbohydrate-carbohydrate interactions in cell adhesion are being increasingly explored as important players in cell-cell and cell-extracellular matrix interactions that are characterized by finelytuned on-off rates. The emerging field of glycomics requires the application of new methodologies to the study of the generally weak and multivalent carbohydrate binding sites. Here we use the quartz crystal microbalance (QCM) for the analysis of the self-binding activity of the g200 glycan, a molecule of marine sponge origin that is responsible for Ca2+-dependent species-specific cell adhesion. The QCM has the advantages over other highly sensitive techniques of having only one of the interacting partners bound to a surface, and of lacking microfluidics circuits prone to be clogged by self-aggregating glycans. Our results show that g200 self-interaction is negligible in the absence of Ca2+. Different association kinetics at low and high Ca2+ concentrations suggest the existence of two different Ca2+ binding sites in g200. Finally, the observation of a non-saturable binding indicates that g200 has more than one self-adhesion site per molecule. This work represents the first report to date using the QCM to study carbohydrate-carbohydrate interactions involved in cell adhesion.

Keywords: Ca2+-dependent binding, Carbohydrate-carbohydrate interaction, Cell adhesion, Proteoglycan, Quartz crystal microbalance, Sponges


Zazoua, A., Kherrat, R., Caballero, D., Errachid, A., Jaffrezic-Renault, N., Bessueille, F., Leonard, D., (2009). Characterisation of a Cr(VI) sensitive polysiloxane membrane by x-ray photoelectron spectrometry and atomic force microscopy Sensor Letters 6th Maghreb-Europe Meeting on Materials and Their Applications for Devices and Physical, Chemical and Biological Sensors , AMER SCIENTIFIC PUBLISHERS (Rabat, Morocco) 7, (5), 995-1000

Cr(VI) sensitive polysiloxane membranes containing tributylphosphate (TBP) or trioctylphosphine oxide (TOPO) were characterized in this study. TBP and TOPO as carriers, have a high selectivity for Cr(VI). The Potentiometric response of EMIS (Electrolyte/Membrane/Insulator/Semiconductor) sensors presents a quasi-nernstian response for Cr2O2-7 exchange. The ion exchange is shown by X-ray photoelectron spectrometry (XPS), the binding energy of the Cr 2p1/2 peak corresponding to Cr(VI) and the atomic composition after exposure to Cr(VI) shows a factor 1.7 higher for silopreneTBP membrane. The conformational topography of both polymeric membranes was characterized by Atomic Force Microscopy (AFM), the exchange of Cr(VI) leading to a heterogeneous topographic state. Adhesion force measurements are also performed to study the properties of adhesion of both selective membranes with a non-functionalized Si AFM tip and with an OTS functionalized one to study the interactions between the tip and the membrane, in liquid before and after the exposure of the membrane to ion chromium. The presence of the ionophores does not practically change the adhesion force compared to pure polysiloxane, showing a good solubility of the ionophore and the orientation of the alkyl chains towards the polysiloxane surface. After the exchange with Cr(VI), the adhesion force decreases drastically due to the hydrophilic character of the surface, complex of Cr(VI) with the P-O groups of both ionophore being oriented towards the surface.

Keywords: AFM, Electrolyte/membrane/insulator/semiconductor structures, Polysiloxane membrane, Xps


Baccar, Z. M., Caballero, D., Zine, N., Jaffrezic-Renault, N., Errachid, A., (2009). Development of urease/layered double hydroxides nanohybrid materials for the urea detection: Synthesis, analytical and catalytic characterizations Sensor Letters 6th Maghreb-Europe Meeting on Materials and Their Applications for Devices and Physical, Chemical and Biological Sensors , AMER SCIENTIFIC PUBLISHERS (Rabat, Morocco) 7, (5), 676-682

We developed new hybrid nanomaterials, urease/LDH (layered double hydroxides), for the urea detection. The LDH that were prepared by co-precipitation in constant pH and in ambient temperature are hydrotalcites (Mg2Al, Mg3Al) and zaccagnaite (Zn2Al and Zn3Al). The immobilization of urease in these various layered hybrid materials is realized by auto-assembly. The structures of hosted matrices were studied by X-ray diffraction, Absorbance Infrared spectroscopy in ATR mode and Atomic Force Microscopy (AFM). These techniques allowed the characterisation of the urease immobilization and its interactions with LDH chemical groups. The urease was adsorbed and its morphology was conserved in its new environment. Furthermore, the study of catalytic parameters of Urease/LDH biomembranes and of the kinetics reaction of urea hydrolysis shows a good conformation of the enzyme in hydrotalcite matrices and that the affinity is similar to free urease.

Keywords: Ldh hybrid nanomaterials, Surface properties, Urea biosensors, Urease thin films


Diaguez, L., Darwish-, N., Mir, M., Martinez, E., Moreno, M., Samitier, J., (2009). Effect of the refractive index of buffer solutions in evanescent optical biosensors Sensor Letters 6th Maghreb-Europe Meeting on Materials and Their Applications for Devices and Physical, Chemical and Biological Sensors , AMER SCIENTIFIC PUBLISHERS (Rabat, Morocco) 7, (5), 851-855

Evanescent field optical biosensors are label free sensors that measure the variation of the refractive index of the adsorbed layer onto a chip surface and translate this variation into surface concentration of the adsorbed molecule. The evanescent field based techniques depend on a theoretical model of the waveguide to determine the desired parameters of the adsorbed layer. As this layer is not only composed by the biomolecules, but also by some amount of the buffer solution, in this study, we have developed a new calibration method to take into account the refractive index buffer changes. We report a new methodology to characterize each sensor chip before the measurements and we present the refractive indexes of different buffer solutions considering the most common ones used in biosensor applications. This work will set the calibration bases for any optical grating biosensor instrument.

Keywords: -----


Guaus, E., Torrent-Burgues, J., Zine, N., Errachid, A., (2009). Glassy carbon electrode modified with a langmuir-blodgett film of a thiomacrocyclic ionophore for Cu(II) recognition Sensor Letters 6th Maghreb-Europe Meeting on Materials and Their Applications for Devices and Physical, Chemical and Biological Sensors , AMER SCIENTIFIC PUBLISHERS (Rabat, Morocco) 7, (5), 1006-1011

Nanometric films of a thiomacrocyclic ionophore, 4-phenyl-4-sulfide-11(1- oxodecyl)-1,7-dithia-11-aza-4-phosphacyclotetradecane (ThM), have been deposited on the surface of a Glassy Carbon Electrode (GCE) by the Langmuir-Blodgett (LB) technique. The films have been characterised by using AFM. The influence of these modified electrodes (GCE-ThM) on the reduction of Cu(II) ions has been investigated by using Cyclic Voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS), and its sensor response has been checked. The CV and EIS responses of LB films on GCE indicate that these ThM films are sensitive to Cu(II) ions. The analysis by EIS of the interference of some other cations, as Mg(II) and Co(II), shows that LB films of ThM can be used for specific Cu(II) sensing applications.

Keywords: Cu(II) sensor, Cyclic voltammetry, Electrochemical impedance spectroscopy, Langmuir-blodgett films


Sporer, C., Casal, L., Caballero, D., Samitier, J., Errachid, A., Perez-Garcia, L., (2009). Novel anionophores for biosensor applications: nano characterisation of SAMS based on amphiphilic imidazolium protophanes and cyclophanes on gold surfaces Sensor Letters 6th Maghreb-Europe Meeting on Materials and Their Applications for Devices and Physical, Chemical and Biological Sensors , AMER SCIENTIFIC PUBLISHERS (Rabat, Morocco) 7, (5), 757-764

Here we report on the results of surface deposition of the novel amphiphilic imidazolium heterocyclophanes and protophanes 1, 2, 3 onto gold electrodes by soft lithography and wet chemistry techniques. Depending on the specific functionalization conditions chosen, the surface properties and the pattern composition can vary widely. The formation of aggregates of monolayers or oligolayer structures and of rings with nano dimensioned wall widths has been investigated with Atomic Force Microscopy (AFM), Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS) and Contact angle measurements.

Keywords: Afm, Imidazolium anionophores, Microcontact printing, Tof-sims


Baccar, Z. M., Hidouri, S., El Bari, N., Jaffrezic-Renault, N., Errachid, A., Zine, N., (2009). Stable immobilization of anti-beta casein antibody onto layered double hydroxides materials for biosensor applications Sensor Letters 6th Maghreb-Europe Meeting on Materials and Their Applications for Devices and Physical, Chemical and Biological Sensors , AMER SCIENTIFIC PUBLISHERS (Rabat, Morocco) 7, (5), 647-655

This review presents the development of new kind of antibody/LDH (layered double hydroxides) hybrid nanomaterials for beta casein detection. The preparation method of the LDH is described. It is based on the co-precipitation of metallic salts in constant pH and temperature. The chosen LDH are hydrotalcites (Mg2AICO3, Mg3AICO3), Zaccagnaite: Zn2AICO3 and hydrocalumite: Ca 2AICI. Finally, the antibody is immobilized into the LDH materials using Layer-by-Layer method by autoassembly. In this work, we studied the surface properties of the prepared hybrid biomembranes using X-ray diffraction, Infrared spectroscopy in ATR mode and Atomic Force Microscopy (AFM). These techniques allow describing the antibody immobilization and its interactions with LDH. The antibody was adsorbed and its morphology was conserved in its new environment after more than 15 days continuously in PBS solution, promising a constant biosensor performance.

Keywords: Anti β-casein antibody, Antibody immobilization, Ldh hybrid biomaterials, Urea biosensors


Lacroix, D., Planell, J. A., (2009). Biomaterials: Processing, characterization, and applications Biomedical Materials Springer US , 123-154

Biomechanics is the study of the mechanics of a part or function of a living body and of the forces exerted by muscles and external loading on the skeletal structure. Biomechanics dates back to ancient times where the study of arthritis was known to be induced by joint disease. But it is only at the beginning of the twentieth century that biomechanical studies of joint materials such as articular cartilage, ligament, and bone began. Living tissues have some similarities with conventional engineering materials although they usually have complex structures that make them more difficult to study. In this chapter, a description of the composition and structure of the main tissues found in mammals is given. The relations between composition, structure and biomechanical properties are presented for bone, cartilage, skin, tendons and ligaments, muscles, and blood vessels and arteries. Finally, some aspects of joint biomechanics are described.


Lacroix, D., (2009). Biomechanical aspects of bone repair Bone repair biomaterials (ed. Planell, J. A., Lacroix, D., Best, S., Merolli, A.), Woodhead (Cambridge, UK)

A fundamental aspect of the rapidly expanding medical care sector, bone repair continues to benefit from emerging technological developments. This text provides researchers and students with a comprehensive review of the materials science and engineering principles behind these developments. The first part reviews the fundamentals of bone repair and regeneration. Further chapters discuss the science and properties of biomaterials used in bone repair, including both metals and biocomposites. Final chapters analyze device considerations such as implant lifetime and failure, and discuss potential applications, as well as the ethical issues that continually confront researchers and clinicians.

Keywords: Bone composition and structure, Biomechanical properties of bone, Bone damage and repair


Planell, J. A., Navarro, M., (2009). Challenges in bone repair Bone repair biomaterials (ed. Planell, J. A., Lacroix, D., Best, S., Merolli, A.), Woodhead (Cambridge, UK) , 3-24

A fundamental aspect of the rapidly expanding medical care sector, bone repair continues to benefit from emerging technological developments. This text provides researchers and students with a comprehensive review of the materials science and engineering principles behind these developments. The first part reviews the fundamentals of bone repair and regeneration. Further chapters discuss the science and properties of biomaterials used in bone repair, including both metals and biocomposites. Final chapters analyze device considerations such as implant lifetime and failure, and discuss potential applications, as well as the ethical issues that continually confront researchers and clinicians.

Keywords: Social impact of musculoskeletal disease, Economic burden of musculoskeletal disease, Social aspects of dental and maxillofacial conditions, Some clinical challenges of bone repair, Conclusions and future trends, Sources of further information and advice


Seeck, A., Garde, A., Schuepbach, M., Giraldo, B., Sanz, E., Huebner, T., Caminal, P., Voss, A., (2009). Diagnosis of ischemic heart disease with cardiogoniometry - linear discriminant analysis versus support vector machines IFMBE Proceedings 4th European Conference of the International Federation for Medical and Biological Engineering (ed. Vander Sloten, Jos, Verdonck, Pascal, Nyssen, Marc, Haueisen, Jens), Springer Berlin Heidelberg (Berlin, Germany) 22, 389-392

The Ischemic Heart Disease (IHD) is characterized by an insufficient supply with blood of the myocardium usually caused by an artherosclerotic disease of the coronary arteries (coronary artery disease CAD). The IHD and its consequences have become a leading problem in the industrialized nations. The aim of this study was to evaluate a new diagnosing method, the cardiogoniometry, using two different classifying techniques: the method of linear discriminant function analysis (LDA) and the method of Support Vector Machines (SVM). Data of a group of 109 female subjects (62 healthy, 47 with IHD) were analyzed on the basis of extracted parameters from the three-dimensional vector loops of the heart. The LDA achieved an accuracy of 83,5% (Sensitivity 78,7%, Specificity 87,1%), whereas the SVM achieved an accuracy of 86% (Sensitivity 80,5%, Specificity 89,8%). It could be shown that cardiogoniometry, an electrophysiological diagnostic method performed at rest, detects variables that are helpful in identifying ischemic heart disease. As it is easy to apply, non-invasive, and provides an automated interpretation it may become an inexpensive addition to the cardiologic diagnostic armamentarium, possibly useful for early diagnosis of IHD or CAD, as well as in patients who do not tolerate exercise testing. It was also proven that by applying Support Vector Machines an increased diagnostic precision in comparison to the conventional discriminant function analysis can be achieved.

Keywords: Cardiogoniometry, Support Vector Machines, Nonlinear classifier, Linear discriminant analysis, Vector loop


Mateos-Timoneda, M. A., (2009). Polymers for bone repair Bone repair biomaterials (ed. Planell, J. A., Lacroix, D., Best, S., Merolli, A.), Woodhead (Cambridge, UK) , 3-24

A fundamental aspect of the rapidly expanding medical care sector, bone repair continues to benefit from emerging technological developments. This text provides researchers and students with a comprehensive review of the materials science and engineering principles behind these developments. The first part reviews the fundamentals of bone repair and regeneration. Further chapters discuss the science and properties of biomaterials used in bone repair, including both metals and biocomposites. Final chapters analyze device considerations such as implant lifetime and failure, and discuss potential applications, as well as the ethical issues that continually confront researchers and clinicians.

Keywords: Ultra high molecular weight polyethylene (UHMWPE), Acrylic polymers as bone cement, Biodegradable polymers


Benetti, E., Navarro, M., Zapotoczny, S., Vancso, G. J., (2009). Stimuli-Responsive Polymer Brushes Surface Design: Applications in Bioscience and Nanotechnology (ed. Förch, R. , Schönherr, H. , Jenkins, A.T.A), Wiley-VCH GmbH & Co. KGaA (Weinheim, Germany) , 125-144

Gutierrez, A., Marco, S., (2009). Biologically inspired signal processing for chemical sensing Studies in Computational Intelligence GOSPEL Workshop on Bio-inspired Signal Processing (ed. Gutierrez, A., Marco, S.), Springer (Barcelona, Spain) -----, (188), -----

This 167-page book is volume 188 in the series 'Studies in computational intelligence.' This volume contain 9 extensive chapters written in English. This volume presents a collection of research advances in biologically inspired signal processing for chemical sensing. The olfactory system, and the gustatory system to a minor extent, has been taken in the last decades as a source of inspiration to develop artificial sensing systems. The recognition of odors by the olfactory system entails a number of signal processing functions such as preprocessing, dimensionality reduction, contrast enhancement, and classification. Using mathematical models to mimic the architecture of the olfactory system, these processing functions can be applied to chemical sensor signals. This book provides background on the olfactory system including a review on information processing in the insect olfactory system along with a proposed signal processing architecture based on the mammalian cortex. It also provides some bio-inspired approaches to process chemical sensor signals such as an olfactory mucosa to improve odor separation and a model of olfactory receptor neuron convergence to correlated sensor responses to an odor and his organoleptic properties. This book will useful to those working or studying in the areas of sensory reception and computational biology.

Keywords: Nervous System (Neural Coordination), Computer Applications (Computational Biology), Sense Organs (Sensory Reception)


Planell, J. A., Lacroix, D., Best, S., Merolli, A., (2009). Bone repair biomaterials Woodhead publishing in materials (ed. Planell, J. A., Lacroix, D., Best, S., Merolli, A.), Woodhead (Cambridge, UK) , 496

- provides a comprehensive review of the materials science, engineering principles and recent advances in this important area - reviews the fundamentals of bone repair and regeneration addressing social, economic and clinical challenges - examines the properties of biomaterials used for bone repair with specific chapters assessing metals, ceramics, polymers and composites - discusses clinical applications and considerations including orthopaedic surgery and bone tissue engineering Bone repair is a fundamental part of the rapidly expanding medical care sector and has benefited from many recent technological developments. With an increasing number of technologies available, it is vital that the correct technique is selected for specific clinical procedures. This unique book will provide a comprehensive review of the materials science, engineering principles and recent advances in this important area. The first part of the book reviews the fundamentals of bone repair and regeneration. Chapters in the second part discuss the science and properties of biomaterials used for bone repair such as metals, ceramics, polymers and composites. The final section of the book discusses clinical applications and considerations with chapters on such topics as orthopaedic surgery, tissue engineering, implant retrieval and ethics of bone repair biomaterials. With its distinguished editors and team of international contributors, Bone repair biomaterials is an invaluable reference for researchers and clinicians within the biomedical industry and academia.

Keywords: -----


Torrents, E., Sahlin, M., Sjöberg, B., (2009). The ribonucleotide reductase family: genetics and genomics Nova Biomedical (ed. Andersson, K.K.), Nova Science Publishers (New York, USA) , 99

-----

Keywords: -----


Comments are closed