Publications

by Keyword: Calcium Phosphate


By year:[ 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

O'Neill, R., McCarthy, H. O., Montufar, E. B., Ginebra, M. P., Wilson, D. I., Lennon, A., Dunne, N., (2017). Critical review: Injectability of calcium phosphate pastes and cements Acta Biomaterialia 50, 1-19

Calcium phosphate cements (CPC) have seen clinical success in many dental and orthopaedic applications in recent years. The properties of CPC essential for clinical success are reviewed in this article, which includes properties of the set cement (e.g. bioresorbability, biocompatibility, porosity and mechanical properties) and unset cement (e.g. setting time, cohesion, flow properties and ease of delivery to the surgical site). Emphasis is on the delivery of calcium phosphate (CaP) pastes and CPC, in particular the occurrence of separation of the liquid and solid components of the pastes and cements during injection; and established methods to reduce this phase separation. In addition a review of phase separation mechanisms observed during the extrusion of other biphasic paste systems and the theoretical models used to describe these mechanisms are discussed. Statement of Significance Occurrence of phase separation of calcium phosphate pastes and cements during injection limits their full exploitation as a bone substitute in minimally invasive surgical applications. Due to lack of theoretical understanding of the phase separation mechanism(s), optimisation of an injectable CPC that satisfies clinical requirements has proven difficult. However, phase separation of pastes during delivery has been the focus across several research fields. Therefore in addition to a review of methods to reduce phase separation of CPC and the associated constraints, a review of phase separation mechanisms observed during extrusion of other pastes and the theoretical models used to describe these mechanisms is presented. It is anticipated this review will benefit future attempts to develop injectable calcium phosphate based systems.

Keywords: Bone cements, Calcium phosphates, Injectability, Material properties, Phase separation


Diez-Escudero, A., Espanol, M., Beats, S., Ginebra, M. P., (2017). In vitro degradation of calcium phosphates: Effect of multiscale porosity, textural properties and composition Acta Biomaterialia 60, 81-92

The capacity of calcium phosphates to be replaced by bone is tightly linked to their resorbability. However, the relative importance of some textural parameters on their degradation behavior is still unclear. The present study aims to quantify the effect of composition, specific surface area (SSA), and porosity at various length scales (nano-, micro- and macroporosity) on the in vitro degradation of different calcium phosphates. Degradation studies were performed in an acidic medium to mimic the osteoclastic environment. Small degradations were found in samples with interconnected nano- and micropores with sizes below 3 µm although they were highly porous (35–65%), with maximum weight loss of 8 wt%. Biomimetic calcium deficient hydroxyapatite, with high SSA and low crystallinity, presented the highest degradation rates exceeding even the more soluble

Keywords: Calcium phosphates, Degradation, Porosity, Textural properties


Oliveira, H., Catros, S., Castano, O., Rey, S., Siadous, R., Clift, D., Marti-Munoz, J., Batista, M., Bareille, R., Planell, J., Engel, E., Amédée, J., (2017). The proangiogenic potential of a novel calcium releasing composite biomaterial: Orthotopic in vivo evaluation Acta Biomaterialia 54, 377-385

Insufficient angiogenesis remains a major hurdle in current bone tissue engineering strategies. An extensive body of work has focused on the use of angiogenic factors or endothelial progenitor cells. However, these approaches are inherently complex, in terms of regulatory and methodologic implementation, and present a high cost. We have recently demonstrate the potential of electrospun poly(lactic acid) (PLA) fiber-based membranes, containing calcium phosphate (CaP) ormoglass particles, to elicit angiogenesis in vivo, in a subcutaneous model in mice. Here we have devised an injectable composite, containing CaP glass-ceramic particles, dispersed within a (Hydroxypropyl)methyl cellulose (HPMC) matrix, with the capacity to release calcium in a more sustained fashion. We show that by tuning the release of calcium in vivo, in a rat bone defect model, we could improve both bone formation and increase angiogenesis. The bone regeneration kinetics was dependent on the Ca2+ release rate, with the faster Ca2+ release composite gel showing improved bone repair at 3 weeks, in relation to control. In the same line, improved angiogenesis could be observed for the same gel formulation at 6 weeks post implantation. This methodology allows to integrate two fundamental processes for bone tissue regeneration while using a simple, cost effective, and safe approach. Statement of Significance In current bone tissue engineering approaches the achievement of sufficient angiogenesis, during tissue regeneration, is a major limitation in order to attain full tissue functionality. Recently, we have shown that calcium ions, released by the degradation of calcium phosphate ormoglasses (CaP), are effective angiogenic promoters, in both in vitro and in a subcutaneous implantation model. Here, we devised an injectable composite, containing CaP glass-ceramic particles, dispersed within a HPMC matrix, enabling the release of calcium in a more sustained fashion. We show that by tuning the release of calcium in vivo, in a rat bone defect model, we could improve both bone formation and increase angiogenesis. This simple and cost effective approach holds great promise to translate to the clinics.

Keywords: Angiogenesis, Bone regeneration, Calcium phosphate ormoglasses


Maazouz, Y., Montufar, E. B., Malbert, J., Espanol, M., Ginebra, M. P., (2017). Self-hardening and thermoresponsive alpha tricalcium phosphate/pluronic pastes Acta Biomaterialia 49, 563-574

Although calcium phosphate cements (CPCs) are used for bone regeneration in a wide range of clinical applications, various physicochemical phenomena are known to hinder their potential use in minimally invasive surgery or in highly vascularized surgical sites, mainly because of their lack of injectability or their low washout resistance. The present work shows that the combination of CPCs with an inverse-thermoresponsive hydrogel is a good strategy for finely tuning the cohesive and rheological properties of CPCs to achieve clinical acceptable injectability to prevent phase separation during implantation and cohesion to avoid washout of the paste. The thermoresponsive CPC developed combines alpha-tricalcium phosphate with an aqueous solution of pluronic F127, which exhibits an inverse thermoresponsive behaviour, with a gelling transformation at around body temperature. These novel CPCs exhibited temperature-dependent properties. Addition of the polymer enhanced the injectability of the paste, even at a low liquid-to-powder ratio, and allowed the rheological properties of the cement to be tuned, with the injection force decreasing with the temperature of the paste. Moreover, the cohesion of the paste was also temperature-dependent and increased as the temperature of the host medium increased due to gelling induced in the paste. The thermoresponsive cement exhibited excellent cohesion and clinically acceptable setting times at 37 °C, irrespective of the initial temperature of the paste. The addition of pluronic F127 slightly delayed the setting reaction in the early stages but did not hinder the full transformation to calcium-deficient hydroxyapatite. Moreover, the frozen storage of premixed thermoresponsive cement pastes was explored, the main physicochemical properties of the cements being maintained upon thawing, even after 18 months of frozen storage. This avoids the need to mix the cement in the operating theatre and allows its use off-the-shelf. The reverse thermoresponsive cements studied herein open up new perspectives in the surgical field, where the sequential gelling/hardening of these novel cements could allow for a better and safer clinical application. Statement of Significance Calcium phosphate cements are attractive bone substitutes due to their similarity to the bone mineral phase. Although they can be injectable, cohesion and stability of the paste are crucial in terms of performance and safety. A common strategy is the combination with hydrogels. However, this often results in a decrease of viscosity with increasing temperature, which can lead to extravasation and particle leakage from the bone defect. The preferred evolution would be the opposite: a low viscosity would enhance mixing and injection, and an instantaneous increase of viscosity after injection would ensure washout resistance to the blood flow. Here we develop for the first time a calcium phosphate cement exhibiting reverse thermoresponsive properties using a poloxamer featuring inverse thermal gelling.

Keywords: Calcium phosphate cement, Cohesion, Hydroxyapatite, Injectability, Pluronic, Thermoresponsive


Diez-Escudero, A., Espanol, M., Montufar, E. B., Di Pompo, G., Ciapetti, G., Baldini, N., Ginebra, M. P., (2017). Focus ion beam/scanning electron microscopy characterization of osteoclastic resorption of calcium phosphate substrates Tissue Engineering Part C: Methods 23, (2), 118-124

This article presents the application of dual focused ion beam/scanning electron microscopy (FIB-SEM) imaging for preclinical testing of calcium phosphates with osteoclast precursor cells and how this high-resolution imaging technique is able to reveal microstructural changes at a level of detail previously not possible. Calcium phosphate substrates, having similar compositions but different microstructures, were produced using low-and high-Temperature processes (biomimetic calcium-deficient hydroxyapatite [CDHA] and stoichiometric sintered hydroxyapatite, respectively). Human osteoclast precursor cells were cultured for 21 days before evaluating their resorptive potential on varying microstructural features. Alternative to classical morphological evaluation of osteoclasts (OC), FIB-SEM was used to observe the subjacent microstructure by transversally sectioning cells and observing both the cells and the substrates. Resorption pits, indicating OC activity, were visible on the smoother surface of high-Temperature sintered hydroxyapatite. FIB-SEM analysis revealed signs of acidic degradation on the grain surface under the cells, as well as intergranular dissolution. No resorption pits were evident on the surface of the rough CDHA substrates. However, whereas no degradation was detected by FIB sections in the material underlying some of the cells, early stages of OC-mediated acidic degradation were observed under cells with more spread morphology. Collectively, these results highlight the potential of FIB to evaluate the resorptive activity of OC, even in rough, irregular, or coarse surfaces where degradation pits are otherwise difficult to visualize.

Keywords: Bone Regeneration, Calcium Phosphate, Focus Ion Beam, Osteoclast, Resorption, Scanning Electron Microscopy


Oliveira, Hugo, Catros, Sylvain, Boiziau, Claudine, Siadous, Robin, Marti-Munoz, Joan, Bareille, Reine, Rey, Sylvie, Castano, Oscar, Planell, Josep, Amédée, Joëlle, Engel, Elisabeth, (2016). The proangiogenic potential of a novel calcium releasing biomaterial: Impact on cell recruitment Acta Biomaterialia 29, 435-445

Abstract In current bone tissue engineering strategies the achievement of sufficient angiogenesis during tissue regeneration is still a major limitation in order to attain full functionality. Several strategies have been described to tackle this problem, mainly by the use of angiogenic factors or endothelial progenitor cells. However, when facing a clinical scenario these approaches are inherently complex and present a high cost. As such, more cost effective alternatives are awaited. Here, we demonstrate the potential of electrospun poly(lactic acid) (PLA) fiber-based membranes, containing calcium phosphate ormoglass (CaP) particles, to elicit angiogenesis in vivo, in a subcutaneous model in mice. We show that the current approach elicited the local expression of angiogenic factors, associated to a chemotactic effect on macrophages, and sustained angiogenesis into the biomaterial. As both PLA and CaP are currently accepted for clinical application these off-the-shelf novel membranes have great potential for guided bone regeneration applications. Statement of significance In current bone tissue engineering approaches the achievement of sufficient angiogenesis, during tissue regeneration, is a major limitation in order to attain full tissue functionality. Recently, our group has found that calcium ions released by the degradation of calcium phosphate ormoglasses (CaP) are effective angiogenic promoters. Based on this, in this work we successfully produced hybrid fibrous mats with different contents of CaP nanoparticles and thus with different calcium ion release rates, using an ormoglass – poly(lactic acid) blend approach. We show that these matrices, upon implantation in a subcutaneous site, could elicit the local expression of angiogenic factors, associated to a chemotactic effect on macrophages, and sustained angiogenesis into the biomaterial, in a CaP dose dependent manner. This off-the-shelf cost effective approach presents great potential to translate to the clinics.

Keywords: Angiogenesis, Bone regeneration, Calcium phosphate ormoglass


Kovtun, A., Goeckelmann, M. J., Niclas, A. A., Montufar, E. B., Ginebra, M. P., Planell, J. A., Santin, M., Ignatius, A., (2015). In vivo performance of novel soybean/gelatin-based bioactive and injectable hydroxyapatite foams Acta Biomaterialia Elsevier Ltd 12, (1), 242-249

Major limitations of calcium phosphate cements (CPCs) are their relatively slow degradation rate and the lack of macropores allowing the ingrowth of bone tissue. The development of self-setting cement foams has been proposed as a suitable strategy to overcome these limitations. In previous work we developed a gelatine-based hydroxyapatite foam (G-foam), which exhibited good injectability and cohesion, interconnected porosity and good biocompatibility in vitro. In the present study we evaluated the in vivo performance of the G-foam. Furthermore, we investigated whether enrichment of the foam with soybean extract (SG-foam) increased its bioactivity. G-foam, SG-foam and non-foamed CPC were implanted in a critical-size bone defect in the distal femoral condyle of New Zealand white rabbits. Bone formation and degradation of the materials were investigated after 4, 12 and 20 weeks using histological and biomechanical methods. The foams maintained their macroporosity after injection and setting in vivo. Compared to non-foamed CPC, cellular degradation of the foams was considerably increased and accompanied by new bone formation. The additional functionalization with soybean extract in the SG-foam slightly reduced the degradation rate and positively influenced bone formation in the defect. Furthermore, both foams exhibited excellent biocompatibility, implying that these novel materials may be promising for clinical application in non-loaded bone defects.

Keywords: Bone regeneration, Calcium phosphate cement, Gelatine, Rabbit model, Soybean


Castaño, O., Sachot, N., Xuriguera, E., Engel, E., Planell, J. A., Park, J. H., Jin, G. Z., Kim, T. H., Kim, J. H., Kim, H. W., (2014). Angiogenesis in bone regeneration: Tailored calcium release in hybrid fibrous scaffolds ACS Applied Materials and Interfaces 6, (10), 7512-7522

In bone regeneration, silicon-based calcium phosphate glasses (Bioglasses) have been widely used since the 1970s. However, they dissolve very slowly because of their high amount of Si (SiO2 > 45%). Recently, our group has found that calcium ions released by the degradation of glasses in which the job of silicon is done by just 5% of TiO2 are effective angiogenic promoters, because of their stimulation of a cell-membrane calcium sensing receptor (CaSR). Based on this, other focused tests on angiogenesis have found that Bioglasses also have the potential to be angiogenic promoters even with high contents of silicon (80%); however, their slow degradation is still a problem, as the levels of silicon cannot be decreased any lower than 45%. In this work, we propose a new generation of hybrid organically modified glasses, ormoglasses, that enable the levels of silicon to be reduced, therefore speeding up the degradation process. Using electrospinning as a faithful way to mimic the extracellular matrix (ECM), we successfully produced hybrid fibrous mats with three different contents of Si (40, 52, and 70%), and thus three different calcium ion release rates, using an ormoglass–polycaprolactone blend approach. These mats offered a good platform to evaluate different calcium release rates as osteogenic promoters in an in vivo subcutaneous environment. Complementary data were collected to complement Ca2+ release analysis, such as stiffness evaluation by AFM,

Keywords: Biological materials, Blood vessels, Calcium, Electrospinning, Glass, Hybrid materials, Silicon oxides, Sol-gel process, Sol-gels, Angiogenesis, Biological characterization, Calcium phosphate glass, Calcium-sensing receptors, Degradation process, Extracellular matrices, Organic/inorganic hybrid materials, ormoglasses, Silicon


Sanzana, E. S., Navarro, M., Ginebra, M. P., Planell, J. A., Ojeda, A. C., Montecinos, H. A., (2014). Role of porosity and pore architecture in the in vivo bone regeneration capacity of biodegradable glass scaffolds Journal of Biomedical Materials Research - Part A 102, (6), 1767-1773

The aim of this work is to shed light on the role of porosity and pore architecture in the in vivo bone regeneration capacity of biodegradable glass scaffolds. A calcium phosphate glass in the system P2O5-CaO-Na2O-TiO2 was foamed using two different porogens, namely albumen and hydrogen peroxide (H2O2); the resulting three-dimensional porous structures were characterized and implanted in New Zealand rabbits to study their in vivo behavior. Scaffolds foamed with albumen displayed a monomodal pore size distribution centered around 150 μm and a porosity of 82%, whereas scaffolds foamed with H2O2 showed lower porosity (37%), with larger elongated pores, and multimodal size distribution. After 12 weeks of implantation, histology results revealed a good osteointegration for both types of scaffolds. The quantitative morphometric analysis showed the substitution of the biomaterial by new bone in the case of glasses foamed with albumen. In contrast, bone neoformation and material resorption were significantly lower in the defects filled with the scaffolds foamed with H2O2. The results obtained in this study showed that both calcium phosphate glass scaffolds were osteoconductive, biocompatible, and biodegradable materials. However, differences in porosity, pore architecture, and microstructure led to substantially different in vivo response.

Keywords: Bone substitutes, Calcium phosphate glasses, in vivo, Scaffolds, Tissue engineering


Rajzer, I., Menaszek, E., Kwiatkowski, R., Planell, J. A., Castaño, O., (2014). Electrospun gelatin/poly( Materials Science and Engineering: C 44, 183-190

In this study gelatin (Gel) modified with calcium phosphate nanoparticles (SG5) and polycaprolactone (PCL) were used to prepare a 3D bi-layer scaffold by collecting electrospun PCL and gelatin/SG5 fibers separately in the same collector. The objective of this study was to combine the desired properties of PCL and Gel/SG5 in the same scaffold in order to enhance mineralization, thus improving the ability of the scaffold to bond to the bone tissue. The scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and the wide angle X-ray diffraction (WAXD) measurements confirmed that SG5 nanoparticles were successfully incorporated into the fibrous gelatin matrix. The composite Gel/SG5/PCL scaffold exhibited more enhanced mechanical properties than individual Gel and Gel/SG5 scaffolds. The presence of SG5 nanoparticles accelerated the nucleation and growth of apatite crystals on the surface of the composite Gel/SG5/PCL scaffold in simulated body fluid (SBF). The osteoblast response in vitro to developed electrospun scaffolds (PCL and Gel/SG5/PCL) was investigated by using normal human primary NHOst cell lines. NHOst cell culture studies showed that higher alkaline phosphatase (ALP) activity and better mineralization were obtained in the case of composite materials than in pure PCL scaffolds. The mechanically strong PCL scaffold served as a skeleton, while the Gel/SG5 fibers facilitated cell spreading and mineralization of the scaffold.

Keywords: Bilayer fibrous scaffold, Ceramic nanoparticles, Electrospinning, Gelatin, Polycaprolactone, Biomechanics, Bone, Calcium phosphate, Cell culture, Electrospinning, Fourier transform infrared spectroscopy, Mechanical properties, Mineralogy, Nanoparticles, Phosphatases, Polycaprolactone, Scanning electron microscopy, X ray diffraction, Polycaprolactone, Alkaline phosphatase activity, Bone tissue engineering, Calcium phosphate nanoparticles, Ceramic nanoparticles, Fibrous scaffolds, Gelatin, Simulated body fluids, Wide-angle x-ray diffraction, Electrospuns, Scaffolds (biology), Electrospinning


Castaño, Oscar, Planell, Josep A., (2014). Cements Bio-Ceramics with Clinical Applications (ed. Vallet-Regí, M.), John Wiley & Sons, Ltd (Chichester, UK) , 193-247

Calcium phosphate cements (CPCs) were meant to produce hydroxyapatite (HA), which is the calcium phosphate that usually results when the cements are mixed with or immersed in aqueous media. The golden age of CPCs was in the late 1990s and the beginning of the 21st century, when they were presented as promising bone substitutes and drug delivery systems. The different reactions that take part in the cement self-setting process depend on many experimental factors – the composition of the cement, the stability of the different components, pH, liquid-to-powder ratio (LPR), and temperature, among others. CPCs have demonstrated fair efficiency for bone regeneration. Cements have gradually been embraced in the wider field of composites by hybridizing their compositions in order that they may adapt to the new trends.

Keywords: Calcium phosphate cements (CPCs), Cements, Hydroxyapatite (HA), Liquid-to-powder ratio (LPR)


Montufar, E. B., Maazouz, Y., Ginebra, M. P., (2013). Relevance of the setting reaction to the injectability of tricalcium phosphate pastes Acta Biomaterialia 9, (4), 6188-6198

The aim of the present work was to analyze the influence of the setting reaction on the injectability of tricalcium phosphate (TCP) pastes. Even if the injection was performed early after mixing powder and liquid, powder reactivity was shown to play a significant role in the injectability of TCP pastes. Significant differences were observed between the injection behavior of non-hardening β-TCP pastes and that of self-hardening α-TCP pastes. The differences were more marked at low liquid-to-powder ratios, using fine powders and injecting through thin needles. α-TCP was, in general, less injectable than β-TCP and required higher injection loads. Moreover, clogging was identified as a mechanism hindering or even preventing injectability, different and clearly distinguishable from the filter-pressing phenomenon. α-TCP pastes presented transient clogging episodes, which were not observed in β-TCP pastes with equivalent particle size distribution. Different parameters affecting powder reactivity were also shown to affect paste injectability. Thus, whereas powder calcination resulted in an increased injectability due to lower particle reactivity, the addition of setting accelerants, such as hydroxyapatite nanoparticles, tended to reduce the injectability of the TCP pastes, especially if adjoined simultaneously with a Na2HPO4 solution. Although, as a general trend, faster-setting pastes were less injectable, some exceptions to this rule were found. For example, whereas in the absence of setting accelerants fine TCP powders were more injectable than the coarse ones, in spite of their shorter setting times, this trend was inverted when setting accelerants were added, and coarse powders were more injectable than the fine ones.

Keywords: Calcium phosphate cement, Hydroxyapatite, Injectability, Setting reaction, Tricalcium phosphate


Perez, R. A., Altankov, G., Jorge-Herrero, E., Ginebra, M. P., (2013). Micro- and nanostructured hydroxyapatite-collagen microcarriers for bone tissue-engineering applications Journal of Tissue Engineering and Regenerative Medicine 7, (5), 353-361

Novel hydroxyapatite (HA)-collagen microcarriers (MCs) with different micro/nanostructures were developed for bone tissue-engineering applications. The MCs were fabricated via calcium phosphate cement (CPC) emulsion in oil. Collagen incorporation in the liquid phase of the CPC resulted in higher MC sphericity. The MCs consisted of a porous network of entangled hydroxyapatite crystals, formed as a result of the CPC setting reaction. The addition of collagen to the MCs, even in an amount as small as 0.8wt%, resulted in an improved interaction with osteoblast-like Saos-2 cells. The micro/nanostructure and the surface texture of the MCs were further tailored by modifying the initial particle size of the CPC. A synergistic effect between the presence of collagen and the nanosized HA crystals was found, resulting in significantly enhanced alkaline phosphatase activity on the collagen-containing nanosized HA MCs.

Keywords: Bone regeneration, Calcium phosphate cement, Cell response, Collagen, Hydroxyapatite, Microcarrier


Ginebra, M. P., Canal, C., Espanol, M., Pastorino, D., Montufar, E. B., (2012). Calcium phosphate cements as drug delivery materials Advanced Drug Delivery Reviews 64, (12), 1090-1110

Calcium phosphate cements are used as synthetic bone grafts, with several advantages, such as their osteoconductivity and injectability. Moreover, their low-temperature setting reaction and intrinsic porosity allow for the incorporation of drugs and active principles in the material. It is the aim of the present work to: a) provide an overview of the different approaches taken in the application of calcium phosphate cements for drug delivery in the skeletal system, and b) identify the most significant achievements. The drugs or active principles associated to calcium phosphate cements are classified in three groups, i) low molecular weight drugs; ii) high molecular weight biomolecules; and iii) ions.

Keywords: Antibiotic, Bioceramic, Biomaterial, Bone regeneration, Calcium phosphate cement, Ceramic matrix, Growth factor, Hydroxyapatite, Ions, Protein


Gustavsson, J., Ginebra, M. P., Planell, J., Engel, E., (2012). Electrochemical microelectrodes for improved spatial and temporal characterization of aqueous environments around calcium phosphate cements Acta Biomaterialia 8, (1), 386-393

Calcium phosphate compounds can potentially influence cellular fate through ionic substitutions. However, to be able to turn such solution-mediated processes into successful directors of cellular response, a perfect understanding of the material-induced chemical reactions in situ is required. We therefore report on the application of home-made electrochemical microelectrodes, tested as pH and chloride sensors, for precise spatial and temporal characterization of different aqueous environments around calcium phosphate-based biomaterials prepared from α-tricalcium phosphate using clinically relevant liquid to powder ratios. The small size of the electrodes allowed for online measurements in traditionally inaccessible in vitro environments, such as the immediate material-liquid interface and the interior of curing bone cement. The kinetic data obtained has been compared to theoretical sorption models, confirming that the proposed setup can provide key information for improved understanding of the biochemical environment imposed by chemically reactive biomaterials.

Keywords: Calcium phosphate, Hydroxyapatite, Ion sorption, Iridium oxide, Sensors, Animals, Biocompatible Materials, Bone Cements, Calcium Phosphates, Cells, Cultured, Chlorides, Electrochemical Techniques, Gold, Hydrogen-Ion Concentration, Hydroxyapatites, Iridium, Materials Testing, Microelectrodes, Powders, Silver, Silver Compounds, Water


Aguirre, A., Gonzalez, A., Navarro, M., Castano, O., Planell, J. A., Engel, E., (2012). Control of microenvironmental cues with a smart biomaterial composite promotes endothelial progenitor cell angiogenesis European Cells & Materials 24, 90-106

Smart biomaterials play a key role when aiming at successful tissue repair by means of regenerative medicine approaches, and are expected to contain chemical as well as mechanical cues that will guide the regenerative process. Recent advances in the understanding of stem cell biology and mechanosensing have shed new light onto the importance of the local microenvironment in determining cell fate. Herein we report the biological properties of a bioactive, biodegradable calcium phosphate glass/polylactic acid composite biomaterial that promotes bone marrow-derived endothelial progenitor cell (EPC) mobilisation, differentiation and angiogenesis through the creation of a controlled bone healing-like microenvironment. The angiogenic response is triggered by biochemical and mechanical cues provided by the composite, which activate two synergistic cell signalling pathways: a biochemical one mediated by the calcium-sensing receptor and a mechanosensitive one regulated by non-muscle myosin II contraction. Together, these signals promote a synergistic response by activating EPCs-mediated VEGF and VEGFR-2 synthesis, which in turn promote progenitor cell homing, differentiation and tubulogenesis. These findings highlight the importance of controlling microenvironmental cues for stem/progenitor cell tissue engineering and offer exciting new therapeutical opportunities for biomaterialbased vascularisation approaches and clinical applications.

Keywords: Calcium phosphate glass composite, Smart biomaterial, Endothelial progenitor cell, Angiogenesis, Mechanosensing, Calcium-sensing receptor


Montufar, Edgar B., Traykova, Tania, Planell, Josep A., Ginebra, Maria-Pau, (2011). Comparison of a low molecular weight and a macromolecular surfactant as foaming agents for injectable self setting hydroxyapatite foams: Polysorbate 80 versus gelatine Materials Science and Engineering: C 31, (7), 1498-1504

Hydroxyapatite foams are potential synthetic bone grafting materials or scaffolds for bone tissue engineering. A novel method to obtain injectable hydroxyapatite foams consists in foaming the liquid phase of a calcium phosphate cement. In this process, the cement powder is incorporated into a liquid foam, which acts as a template for macroporosity. After setting, the cement hardens maintaining the macroporous structure of the foam. In this study a low molecular weight surfactant, Polysorbate 80, and a protein, gelatine, were compared as foaming agents of a calcium phosphate cement. The foamability of Polysorbate 80 was greater than that of gelatine, resulting in higher macroporosity in the set hydroxyapatite foam and higher macropore interconnectivity. Gelatine produced less interconnected foams, especially at high concentrations, due to a higher liquid foam stability. However it increased the injectability and cohesion of the foamed paste, and enhanced osteoblastic-like cell adhesion, all of them important properties for bone grafting materials.

Keywords: Hydroxyapatite, Porosity, Calcium phosphate cement, Scaffolds, Foaming, Bone regeneration


Perut, F., Montufar, E. B., Ciapetti, G., Santin, M., Salvage, J., Traykova, T., Planell, J. A., Ginebra, M. P., Baldini, N., (2011). Novel soybean/gelatine-based bioactive and injectable hydroxyapatite foam: Material properties and cell response Acta Biomaterialia 7, (4), 1780-1787

Despite their known osteoconductivity, clinical use of calcium phosphate cements is limited both by their relatively slow rate of resorption and by rheological properties incompatible with injectability. Bone in-growth and material resorption have been improved by the development of porous calcium phosphate cements. However, injectable formulations have so far only been obtained through the addition of relatively toxic surfactants. The present work describes the response of osteoblasts to a novel injectable foamed bone cement based on a composite formulation including the bioactive foaming agents soybean and gelatine. The foaming properties of both defatted soybean and gelatine gels were exploited to develop a self-hardening soy/gelatine/hydroxyapatite composite foam able to retain porosity upon injection. After setting, the foamed paste produced a calcium-deficient hydroxyapatite scaffold, showing good injectability and cohesion as well as interconnected porosity after injection. The intrinsic bioactivity of soybean and gelatine was shown to favour osteoblast adhesion and growth. These findings suggest that injectable, porous and bioactive calcium phosphate cements can be produced for bone regeneration through minimally invasive surgery.

Keywords: Calcium phosphate cement, Composite, Bone tissue engineering, Cell viability, Bioactivity


Perez, R. A., Del Valle, S., Altankov, G., Ginebra, M. P., (2011). Porous hydroxyapatite and gelatin/hydroxyapatite microspheres obtained by calcium phosphate cement emulsion Journal of Biomedical Materials Research - Part B: Applied Biomaterials 97B, (1), 156-166

Hydroxyapatite and hybrid gelatine/hydroxyapatite microspheres were obtained through a water in oil emulsion of a calcium phosphate cement (CPC). The setting reaction of the CPC, in this case the hydrolysis of alpha-tricalcium phosphate, was responsible for the consolidation of the microspheres. After the setting reaction, the microspheres consisted of an entangled network of hydroxyapatite crystals, with a high porosity and pore sizes ranging between 0.5 and 5 mu m. The size of the microspheres was tailored by controlling the viscosity of the hydrophobic phase, the rotation speed, and the initial powder size of the CPC. The incorporation of gelatin increased the sphericity of the microspheres, as well as their size and size dispersion. To assess the feasibility of using the microspheres as cell microcarriers, Saos-2 cells were cultured on the microspheres. Fluorescent staining, SEM studies, and LDH quantification showed that the microspheres were able to sustain cell growth. Cell adhesion and proliferation was significantly improved in the hybrid gelatin/hydroxyapatite microspheres as compared to the hydroxyapatite ones.

Keywords: Calcium phosphate(s), Bone graft, Microspheres, Composite/hard tissue, Hydroxy(1)lapatite


Sandino, C., Checa, S., Prendergast, P. J., Lacroix, D., (2010). Simulation of angiogenesis and cell differentiation in a CaP scaffold subjected to compressive strains using a lattice modeling approach Biomaterials 31, (8), 2446-2452

Mechanical stimuli are one of the factors that influence tissue differentiation. In the development of biomaterials for bone tissue engineering, mechanical stimuli and formation of a vascular network that transport oxygen to cells within the pores of the scaffolds are essential. Angiogenesis and cell differentiation have been simulated in scaffolds of regular porosity; however, the dynamics of differentiation can be different when the porosity is not uniform. The objective of this study was to investigate the effect of the mechanical stimuli and the capillary network formation on cell differentiation within a scaffold of irregular morphology. A porous scaffold of calcium phosphate based glass was used. The pores and the solid phase were discretized using micro computed tomography images. Cell activity was simulated within the interconnected pore domain of the scaffold using a lattice modeling approach. Compressive strains of 0.5 and 1% of total deformation were applied and two cases of mesenchymal stem cells initialization (in vitro seeding and in vivo) were simulated. Similar capillary networks were formed independently of the cell initialization mode and the magnitude of the mechanical strain applied. Most of vessels grew in the pores at the periphery of the scaffolds and were blocked by the walls of the scaffold. When 0.5% of strain was applied, 70% of the pore volume was affected by mechano-regulatory stimuli corresponding to bone formation; however, because of the lack of oxygen, only 40% of the volume was filled with osteoblasts. 40% of volume was filled with chondrocytes and 3% with fibroblasts. When the mechanical strain was increased to 1%, 11% of the pore volume was filled with osteoblasts, 59% with chondrocytes, and 8% with fibroblasts. This study has shown the dynamics of the correlation between mechanical load, angiogenesis and tissue differentiation within a scaffold with irregular morphology.

Keywords: Tissue engineering, Calcium phosphates, Mechanoregulation, Micro computer tomography, Finite element modeling


Montufar, E. B., Traykova, T., Gil, C., Harr, I., Almirall, A., Aguirre, A., Engel, E., Planell, J. A., Ginebra, M. P., (2010). Foamed surfactant solution as a template for self-setting injectable hydroxyapatite scaffolds for bone regeneration Acta Biomaterialia 6, (3), 876-885

The application of minimally invasive surgical techniques in the field of orthopaedic surgery has created a growing need for new injectable synthetic materials that can be used for bone grafting In this work a novel fully synthetic injectable calcium phosphate foam was developed by mixing alpha-tricalcium phosphate (alpha-TCP) powder with a foamed polysorbate 80 solution Polysorbate 80 is a non-ionic surfactant approved for parenteral applications The foam was able to retain the porous structure after injection provided that the foamed paste was injected shortly after mixing (typically 2 5 min), and set through the hydrolysis of alpha-TCP to a calcium-deficient hydroxyapatite, thus producing a hydroxyapatite solid foam in situ The effect of different processing parameters on the porosity. microstructure, injectability and mechanical properties of the hydroxyapatite foams was analysed, and the ability of the pre-set foam to support osteoblastic-like cell proliferation and differentiation was assessed. Interestingly, the concentration of surfactant needed to obtain the foams was lower than that considered safe in drug formulations for parenteral administration The possibility of combining bioactivity, injectability, macroporosity and self-setting ability in a single fully synthetic material represents a step forward in the design of new materials for bone regeneration compatible with minimally invasive surgical techniques.

Keywords: Calcium phosphate cement, Hydroxyapatite foam, Scaffold, Surfactant, Injectable material


Ginebra, M. P., Espanol, M., Montufar, E. B., Perez, R. A., Mestres, G., (2010). New processing approaches in calcium phosphate cements and their applications in regenerative medicine Acta Biomaterialia 6, (8), 2863-2873

The key feature of calcium phosphate cements (CPCs) lies in the setting reaction triggered by mixing one or more solid calcium phosphate salts with an aqueous solution. Upon mixture, the reaction takes place through a dissolution-precipitation process which is macroscopically observed by a gradual hardening of the cement paste. The precipitation of hydroxyapatite nanocrystals at body or room temperature, and the fact that those materials can be used as self-setting pastes, have for many years been the most attractive features of CPCs. However, the need to develop materials able to sustain bone tissue ingrowth and be capable of delivering drugs and bioactive molecules, together with the continuous requirement from surgeons to develop more easily handling cements, has pushed the development of new processing routes that can accommodate all these requirements, taking advantage of the possibility of manipulating the self-setting CPC paste. It is the goal of this paper to provide a brief overview of the new processing developments in the area of CPCs and to identify the most significant achievements.

Keywords: Bone regeneration, Calcium phosphate cements, Granules, Microcarriers, Scaffolds


Engel, E., Del Valle, S., Aparicio, C., Altankov, G., Asin, L., Planell, J. A., Ginebra, M. P., (2008). Discerning the role of topography and ion exchange in cell response of bioactive tissue engineering scaffolds Tissue Engineering Part A 14, (8), 1341-1351

Surface topography is known to have an influence on osteoblast activity. However, in the case of bioactive materials, topographical changes can affect also ion exchange properties. This makes the problem more complex, since it is often difficult to separate the strictly topographical effects from the effects of ionic fluctuations in the medium. The scope of this paper is to analyze the simultaneous effect of topography and topography-mediated ion exchange on the initial cellular behavior of osteoblastic-like cells cultured on bioactive tissue engineering substrates. Two apatitic substrates with identical chemical composition but different micro/nanostructural features were obtained by low-temperature setting of a calcium phosphate cement. MG63 osteoblastic-like cells were cultured either in direct contact with the substrates or with their extracts. A strong and permanent decrease of calcium concentration in the culture medium, dependent on substrate topography, was detected. A major effect of the substrate microstructure on cell proliferation was observed, explained in part by the topography-mediated ion exchange, but not specifically by the ionic Ca(2+) fluctuations. Cell differentiation was strongly enhanced when cells were cultured on the finer substrate. This effect was not explained by the chemical modification of the medium, but rather suggested a strictly topographical effect.

Keywords: Alkaline Phosphatase/metabolism, Bone Cements/pharmacology, Calcium/metabolism, Calcium Phosphates/pharmacology, Cell Adhesion/drug effects, Cell Differentiation/drug effects, Cell Proliferation/drug effects, Cell Shape/drug effects, Cells, Cultured, Culture Media, Durapatite/pharmacology, Humans, Interferometry, Ion Exchange, Materials Testing, Osteoblasts/ cytology/drug effects/enzymology/ultrastructure, Phosphorus/metabolism, Powders, Tissue Engineering, Tissue Scaffolds


Sanzana, E. S., Navarro, M., Macule, F., Suso, S., Planell, J. A., Ginebra, M. P., (2008). Of the in vivo behavior of calcium phosphate cements and glasses as bone substitutes Acta Biomaterialia 4, (6), 1924-1933

The use of injectable self-setting calcium phosphate cements or soluble glass granules represent two different strategies for bone regeneration, each with distinct advantages and potential applications. This study compares the in vivo behavior of two calcium phosphate cements and two phosphate glasses with different composition, microstructure and solubility, using autologous bone as a control, in a rabbit model. The implanted materials were alpha-tricalcium phosphate cement (cement H), calcium sodium potassium phosphate cement (cement R), and two phosphate glasses in the P2O5-CaO-Na2O and P2O5-CaO-Na2O-TiO2 systems. The four materials were osteoconductive, biocompatible and biodegradable. Radiological and histological studies demonstrated correct osteointegration and substitution of the implants by new bone. The reactivity of the different materials, which depends on their solubility, porosity and specific surface area, affected the resorption rate and bone formation mainly during the early stages of implantation, although this effect was weak. Thus, at 4 weeks the degradation was slightly higher in cements than in glasses, especially for cement R. However, after 12 weeks of implantation all materials showed a similar degradation degree and promoted bone neoformation equivalent to that of the control group.

Keywords: Calcium phosphates, Calcium phosphate cements, Phosphate glasses, Bone grafts, Bone regenerations


Charles-Harris, M., Koch, M. A., Navarro, M., Lacroix, D., Engel, E., Planell, J. A., (2008). A PLA/calcium phosphate degradable composite material for bone tissue engineering: an in vitro study Journal of Materials Science-Materials in Medicine 19, (4), 1503-1513

Biodegradable polymers reinforced with an inorganic phase such as calcium phosphate glasses may be a promising approach to fulfil the challenging requirements presented by 3D porous scaffolds for tissue engineering. Scaffolds' success depends mainly on their biological behaviour. This work is aimed to the in vitro study of polylactic acid (PLA)/CaP glass 3D porous constructs for bone regeneration. The scaffolds were elaborated using two different techniques, namely solvent-casting and phase-separation. The effect of scaffolds' micro and macrostructure on the biological response of these scaffolds was assayed. Cell proliferation, differentiation and morphology within the scaffolds were studied. Furthermore, polymer/glass scaffolds were seeded under dynamic conditions in a custom-made perfusion bioreactor. Results indicate that the final architecture of the solvent-cast or phase separated scaffolds have a significant effect on cells' behaviour. Solvent-cast scaffolds seem to be the best candidates for bone tissue engineering. Besides, dynamic seeding yielded a higher seeding efficiency in comparison with the static method.

Keywords: Biocompatible Materials/ chemistry, Bone and Bones/ metabolism, Calcium Phosphates/ chemistry, Cell Differentiation, Cell Proliferation, Humans, Lactic Acid/ chemistry, Microscopy, Confocal, Microscopy, Electron, Scanning, Osteoblasts/metabolism, Permeability, Polymers/ chemistry, Porosity, Solvents/chemistry, Tissue Engineering/ methods


Comments are closed