Publications

by Keyword: CoCr


By year:[ 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Schieber, R., Lasserre, F., Hans, M., Fernández-Yagüe, M., Díaz-Ricart, M., Escolar, G., Ginebra, M. P., Mücklich, F., Pegueroles, M., (2017). Direct laser interference patterning of CoCr alloy surfaces to control endothelial cell and platelet response for cardiovascular applications Advanced Healthcare Materials Early View (Online Version of Record published before inclusion in an issue)

The main drawbacks of cardiovascular bare-metal stents (BMS) are in-stent restenosis and stent thrombosis as a result of an incomplete endothelialization after stent implantation. Nano- and microscale modification of implant surfaces is a strategy to recover the functionality of the artery by stimulating and guiding molecular and biological processes at the implant/tissue interface. In this study, cobalt-chromium (CoCr) alloy surfaces are modified via direct laser interference patterning (DLIP) in order to create linear patterning onto CoCr surfaces with different periodicities (≈3, 10, 20, and 32 μm) and depths (≈20 and 800 nm). Changes in surface topography, chemistry, and wettability are thoroughly characterized before and after modification. Human umbilical vein endothelial cells' adhesion and spreading are similar for all patterned and plain CoCr surfaces. Moreover, high-depth series induce cell elongation, alignment, and migration along the patterned lines. Platelet adhesion and aggregation decrease in all patterned surfaces compared to CoCr control, which is associated with changes in wettability and oxide layer characteristics. Cellular studies provide evidence of the potential of DLIP topographies to foster endothelialization without enhancement of platelet adhesion, which will be of high importance when designing new BMS in the future.

Keywords: CoCr, Direct laser interference patterning, Endothelial cells, Linear surface pattern, Platelets


Castellanos, M. I., Mas-Moruno, C., Grau, A., Serra-Picamal, X., Trepat, X., Albericio, F., Joner, M., Gil, F. J., Ginebra, M. P., Manero, J. M., Pegueroles, M., (2017). Functionalization of CoCr surfaces with cell adhesive peptides to promote HUVECs adhesion and proliferation Applied Surface Science 393, 82-92

Biomimetic surface modification with peptides that have specific cell-binding moieties is a promising approach to improve endothelialization of metal-based stents. In this study, we functionalized CoCr surfaces with RGDS, REDV, YIGSR peptides and their combinations to promote endothelial cells (ECs) adhesion and proliferation. An extensive characterization of the functionalized surfaces was performed by XPS analysis, surface charge and quartz crystal microbalance with dissipation monitoring (QCM-D), which demonstrated the successful immobilization of the peptides to the surface. Cell studies demonstrated that the covalent functionalization of CoCr surfaces with an equimolar combination of RGDS and YIGSR represents the most powerful strategy to enhance the early stages of ECs adhesion and proliferation, indicating a positive synergistic effect between the two peptide motifs. Although these peptide sequences slightly increased smooth muscle cells (SMCs) adhesion, these values were ten times lower than those observed for ECs. The combination of RGDS with the REDV sequence did not show synergistic effects in promoting the adhesion or proliferation of ECs. The strategy presented in this study holds great potential to overcome clinical limitations of current metal stents by enhancing their capacity to support surface endothelialization.

Keywords: Cell adhesive peptides, CoCr alloy, Endothelialization, HUVEC proliferation, SMCs adhesion, Surface functionalization


Castellanos, M. I., Guillem-Marti, J., Mas-Moruno, C., Díaz-Ricart, M., Escolar, G., Ginebra, M. P., Gil, F. J., Pegueroles, M., Manero, J. M., (2017). Cell adhesive peptides functionalized on CoCr alloy stimulate endothelialization and prevent thrombogenesis and restenosis Journal of Biomedical Materials Research - Part A 105, (4), 973-983

Immobilization of bioactive peptide sequences on CoCr surfaces is an effective route to improve endothelialization, which is of great interest for cardiovascular stents. In this work, we explored the effect of physical and covalent immoblization of RGDS, YIGSR and their equimolar combination peptides on endothelial cells (EC) and smooth muscle cell (SMC) adhesion and on thrombogenicity. We extensively investigated using RT-qPCR, the expression by ECs cultured on functionalised CoCr surfaces of different genes. Genes relevant for adhesion (ICAM-1 and VCAM-1), vascularization (VEGFA, VEGFR-1 and VEGFR-2) and anti-thrombogenicity (tPA and eNOS) were over-expressed in the ECs grown to covalently functionalized CoCr surfaces compared to physisorbed and control surfaces. Pro-thrombogenic genes expression (PAI-1 and vWF) decreased over time. Cell co-cultures of ECs/SMCs found that functionalization increased the amount of adhered ECs onto modified surfaces compared to plain CoCr, independently of the used peptide and the strategy of immobilization. SMCs adhered less compared to ECs in all surfaces. All studied peptides showed a lower platelet cell adhesion compared to TCPS. Covalent functionalization of CoCr surfaces with an equimolar combination of RGDS and YIGSR represented prevailing strategy to enhance the early stages of ECs adhesion and proliferation, while preventing SMCs and platelet adhesion.

Keywords: Cell coculture, CoCr alloy, Functionalization, Gene expression, Platelet adhesion


Comments are closed