DONATE

Publications

by Keyword: Computational neuroscience

Arsiwalla, Xerxes D., Verschure, Paul, (2018). Measuring the complexity of consciousness Frontiers in Neuroscience 12, (424), Article 424

The grand quest for a scientific understanding of consciousness has given rise to many new theoretical and empirical paradigms for investigating the phenomenology of consciousness as well as clinical disorders associated to it. A major challenge in this field is to formalize computational measures that can reliably quantify global brain states from data. In particular, information-theoretic complexity measures such as integrated information have been proposed as measures of conscious awareness. This suggests a new framework to quantitatively classify states of consciousness. However, it has proven increasingly difficult to apply these complexity measures to realistic brain networks. In part, this is due to high computational costs incurred when implementing these measures on realistically large network dimensions. Nonetheless, complexity measures for quantifying states of consciousness are important for assisting clinical diagnosis and therapy. This article is meant to serve as a lookup table of measures of consciousness, with particular emphasis on clinical applicability. We consider both, principle-based complexity measures as well as empirical measures tested on patients. We address challenges facing these measures with regard to realistic brain networks, and where necessary, suggest possible resolutions. We address challenges facing these measures with regard to realistic brain networks, and where necessary, suggest possible resolutions.

JTD Keywords: Consciousness in the Clinic, Computational neuroscience, Complexity measures, Clinical Neuroscience, Measures of consciousness


Arsiwalla, X. D., Pacheco, D., Principe, A., Rocamora, R., Verschure, P., (2018). A temporal estimate of integrated information for intracranial functional connectivity Artificial Neural Networks and Machine Learning (Lecture Notes in Computer Science) 27th International Conference on Artificial Neural Networks (ICANN 2018) , Springer, Cham (Rhodes, Greece) 11140, 403-412

A major challenge in computational and systems neuroscience concerns the quantification of information processing at various scales of the brain’s anatomy. In particular, using human intracranial recordings, the question we ask in this paper is: How can we estimate the informational complexity of the brain given the complex temporal nature of its dynamics? To address this we work with a recent formulation of network integrated information that is based on the Kullback-Leibler divergence between the multivariate distribution on the set of network states versus the corresponding factorized distribution over its parts. In this work, we extend this formulation for temporal networks and then apply it to human brain data obtained from intracranial recordings in epilepsy patients. Our findings show that compared to random re-wirings of the data, functional connectivity networks, constructed from human brain data, score consistently higher in the above measure of integrated information. This work suggests that temporal integrated information may indeed be a good starting point as a future measure of cognitive complexity.

JTD Keywords: Brain networks, Complexity measures, Computational neuroscience, Functional connectivity


Marco, S., Gutiérrez-Gálvez, A., Lansner, A., Martinez, D., Rospars, J. P., Beccherelli, R., Perera, A., Pearce, T., Vershure, P., Persaud, K., (2013). Biologically inspired large scale chemical sensor arrays and embedded data processing Proceedings of SPIE - The International Society for Optical Engineering Smart Sensors, Actuators, and MEMS VI , SPIE Digital Library (Grenoble, France) 8763, 1-15

Biological olfaction outperforms chemical instrumentation in specificity, response time, detection limit, coding capacity, time stability, robustness, size, power consumption, and portability. This biological function provides outstanding performance due, to a large extent, to the unique architecture of the olfactory pathway, which combines a high degree of redundancy, an efficient combinatorial coding along with unmatched chemical information processing mechanisms. The last decade has witnessed important advances in the understanding of the computational primitives underlying the functioning of the olfactory system. EU Funded Project NEUROCHEM (Bio-ICT-FET- 216916) has developed novel computing paradigms and biologically motivated artefacts for chemical sensing taking inspiration from the biological olfactory pathway. To demonstrate this approach, a biomimetic demonstrator has been built featuring a large scale sensor array (65K elements) in conducting polymer technology mimicking the olfactory receptor neuron layer, and abstracted biomimetic algorithms have been implemented in an embedded system that interfaces the chemical sensors. The embedded system integrates computational models of the main anatomic building blocks in the olfactory pathway: The olfactory bulb, and olfactory cortex in vertebrates (alternatively, antennal lobe and mushroom bodies in the insect). For implementation in the embedded processor an abstraction phase has been carried out in which their processing capabilities are captured by algorithmic solutions. Finally, the algorithmic models are tested with an odour robot with navigation capabilities in mixed chemical plumes.

JTD Keywords: Antennal lobes, Artificial olfaction, Computational neuroscience, Olfactory bulbs, Plume tracking, Abstracting, Actuators, Algorithms, Biomimetic processes, Chemical sensors, Conducting polymers, Data processing, Flavors, Odors, Robots, Smart sensors, Embedded systems