DONATE

Publications

by Keyword: Cycloaddition

Yang, BQ, Wang, YX, Vorobii, M, Sauter, E, Koenig, M, Kumar, R, Rodriguez-Emmenegger, C, Hirtz, M, (2022). Evaluation of Dibenzocyclooctyne and Bicyclononyne Click Reaction on Azido-Functionalized Antifouling Polymer Brushes via Microspotting Advanced Materials Interfaces 9, 2102325

Andrian, T, Bakkum, T, van Elsland, DM, Bos, E, Koster, AJ, Albertazzi, L, van Kasteren, SI, Pujals, S, (2021). Super-resolution correlative light-electron microscopy using a click-chemistry approach for studying intracellular trafficking Methods In Cell Biology 162, 303-331

© 2020 Elsevier Inc. Correlative light and electron microscopy (CLEM) entails a group of multimodal imaging techniques that are combined to pinpoint to the location of fluorescently labeled molecules in the context of their ultrastructural cellular environment. Here we describe a detailed workflow for STORM-CLEM, in which STochastic Optical Reconstruction Microscopy (STORM), an optical super-resolution technique, is correlated with transmission electron microscopy (TEM). This protocol has the advantage that both imaging modalities have resolution at the nanoscale, bringing higher synergies on the information obtained. The sample is prepared according to the Tokuyasu method followed by click-chemistry labeling and STORM imaging. Then, after heavy metal staining, electron microscopy imaging is performed followed by correlation of the two images. The case study presented here is on intracellular pathogens, but the protocol is versatile and could potentially be applied to many types of samples.

JTD Keywords: cells, click-chemistry, complex, correlative light and electron microscopy, cycloaddition, ligation, localization, proteins, resolution limit, single molecule localization microscopy, stochastic optical reconstruction microscopy (storm), storm, super-resolution microscopy, tokuyasu cryo-sectioning, tool, Click-chemistry, Correlative light and electron microscopy, Fluorescent-probes, Single molecule localization microscopy, Stochastic optical reconstruction microscopy (storm), Super-resolution microscopy, Tokuyasu cryo-sectioning, Transmission electron microscopy


Quadri, M., Matera, C., Silnovi, Pismataro, M. C., Horenstein, N. A., Stokes, C., Papke, R. L., Dallanoce, C., (2017). Identification of α7 nicotinic acetylcholine receptor silent agonists based on the spirocyclic quinuclidine-Δ2-isoxazoline scaffold: Synthesis and electrophysiological evaluation ChemMedChem XXIV National Meeting in Medicinal Chemistry (NMMC 2016) , Wiley Online Library (Perugia, Spain) 12, (16), 1335-1348

Compound 11 (3-(benzyloxy)-1′-methyl-1′-azonia-4H-1′-azaspiro[isoxazole-5,3′-bicyclo[2.2.2]octane] iodide) was selected from a previous set of nicotinic ligands as a suitable model compound for the design of new silent agonists of α7 nicotinic acetylcholine receptors (nAChRs). Silent agonists evoke little or no channel activation but can induce the α7 desensitized Ds state, which is sensitive to a type II positive allosteric modulator, such as PNU-120596. Introduction of meta substituents into the benzyloxy moiety of 11 led to two sets of tertiary amines and quaternary ammonium salts based on the spirocyclic quinuclidinyl-Δ2-isoxazoline scaffold. Electrophysiological assays performed on Xenopus laevis oocytes expressing human α7 nAChRs highlighted four compounds that are endowed with a significant silent-agonism profile. Structure–activity relationships of this group of analogues provided evidence of the crucial role of the positive charge at the quaternary quinuclidine nitrogen atom. Moreover, the present study indicates that meta substituents, in particular halogens, on the benzyloxy substructure direct specific interactions that stabilize a desensitized conformational state of the receptor and induce silent activity

JTD Keywords: Agonists, Cycloaddition, Nitrogen heterocycles, Receptors, Spiro compounds