Publications

by Keyword: Elastic modulus


By year:[ 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Alcaraz, J., Otero, J., Jorba, I., Navajas, D., (2018). Bidirectional mechanobiology between cells and their local extracellular matrix probed by atomic force microscopy Seminars in Cell and Developmental Biology 73, 71-81

There is growing recognition that the mechanical interactions between cells and their local extracellular matrix (ECM) are central regulators of tissue development, homeostasis, repair and disease progression. The unique ability of atomic force microscopy (AFM) to probe quantitatively mechanical properties and forces at the nanometer or micrometer scales in all kinds of biological samples has been instrumental in the recent advances in cell and tissue mechanics. In this review we illustrate how AFM has provided important insights on our current understanding of the mechanobiology of cells, ECM and cell-ECM bidirectional interactions, particularly in the context of soft acinar tissues like the mammary gland or pulmonary tissue. AFM measurements have revealed that intrinsic cell micromechanics is cell-type specific, and have underscored the prominent role of

Keywords: Atomic force microscopy, Beta1 integrin, Elastic modulus, Extracellular matrix, Morphogenesis, Tissue decellularization


Giménez, A., Uriarte, J. J., Vieyra, J., Navajas, D., Alcaraz, J., (2017). Elastic properties of hydrogels and decellularized tissue sections used in mechanobiology studies probed by atomic force microscopy Microscopy Research and Technique 80, (1), 85-96

The increasing recognition that tissue elasticity is an important regulator of cell behavior in normal and pathologic conditions such as fibrosis and cancer has driven the development of cell culture substrata with tunable elasticity. Such development has urged the need to quantify the elastic properties of these cell culture substrata particularly at the nanometer scale, since this is the relevant length scale involved in cell-extracellular matrix (ECM) mechanical interactions. To address this need, we have exploited the versatility of atomic force microscopy to quantify the elastic properties of a variety of cell culture substrata used in mechanobiology studies, including floating collagen gels, ECM-coated polyacrylamide gels, and decellularized tissue sections. In this review we summarize major findings in this field from our group within the context of the state-of-the-art in the field, and provide a critical discussion on the applicability and complementarity of currently available cell culture assays with tunable elasticity. In addition, we briefly describe how the limitations of these assays provide opportunities for future research, which is expected to continue expanding our understanding of the mechanobiological aspects that support both normal and diseased conditions.

Keywords: 3D culture, Atomic force microscopy, Elastic modulus, Extracellular matrix, Polyacrylamide