DONATE

Publications

by Keyword: Fibrillogenesis

Valle-Delgado, J. J., Alfonso-Prieto, M., de Groot, N. S., Ventura, S., Samitier, J., Rovira, C., Fernàndez-Busquets, X., (2010). Modulation of A beta(42) fibrillogenesis by glycosaminoglycan structure FASEB Journal , 24, (11), 4250-4261

The role of amyloid beta (A beta) peptide in the onset and progression of Alzheimer's disease is linked to the presence of soluble A beta species. Sulfated glycosaminoglycans (GAGs) promote A beta fibrillogenesis and reduce the toxicity of the peptide in neuronal cell cultures, but a satisfactory rationale to explain these effects at the molecular level has not been provided yet. We have used circular dichroism, Fourier transform infrared spectroscopy, fluorescence microscopy and spectroscopy, protease digestion, atomic force microscopy (AFM), and molecular dynamics simulations to characterize the association of the 42-residue fragment A beta(42) with sulfated GAGs, hyaluronan, chitosan, and poly(vinyl sulfate) (PVS). Our results indicate that the formation of stable A beta(42) fibrils is promoted by polymeric GAGs with negative charges placed in-frame with the 4.8-angstrom separating A beta(42) monomers within protofibrillar beta-sheets. Incubation of A beta(42) with excess sulfated GAGs and hyaluronan increased amyloid fibril content and resistance to proteolysis 2- to 5-fold, whereas in the presence of the cationic polysaccharide chitosan, A beta(42) fibrillar species were reduced by 25% and sensitivity to protease degradation increased similar to 3-fold. Fibrils of intermediate stability were obtained in the presence of PVS, an anionic polymer with more tightly packed charges than GAGs. Important structural differences between A beta(42) fibrils induced by PVS and A beta(42) fibrils obtained in the presence of GAGs and hyaluronan were observed by AFM, whereas mainly precursor protofibrillar forms were detected after incubation with chitosan. Computed binding energies per peptide from -11.2 to -13.5 kcal/mol were calculated for GAGs and PVS, whereas a significantly lower value of -7.4 kcal/mol was obtained for chitosan. Taken together, our data suggest a simple and straightforward mechanism to explain the role of GAGs as enhancers of the formation of insoluble A beta(42) fibrils trapping soluble toxic forms.

JTD Keywords: Alzheimer's disease, Amyloid fibril structure, Fibrillogenesis enhancers and inhibitors, Polysaccharides


Rico, P., Rodriguez Hernandez, J. C., Moratal, D., Altankov, G., Monleon Pradas, M., Salmeron-Sanchez, M., (2009). Substrate-induced assembly of fibronectin into networks. Influence of surface chemistry and effect on osteoblast adhesion Tissue Engineering Part A , 15, (00), 1-11

The influence of surface chemistry -substrates with controlled surface density of -OH groups- on fibronectin conformation and distribution is directly observed by Atomic Force Microscopy (AFM). FN fibrillogenesis, which is known to be a process triggered by interaction with integrins, is shown in our case to be induced by the substrate (in absence of cells), which is able to enhance FN-FN interactions leading to the formation of a protein network on the material surface. This phenomenon depends both on surface chemistry and protein concentration. The level of the FN fibrillogenesis was quantified by calculating the fractal dimension of the adsorbed protein from image analysis of the AFM results. The total amount of adsorbed FN is obtained by making use of a methodology which employs western-blotting combined with image analysis of the corresponding protein bands, with the lowest sensitivity threshold equal to 15 ng of adsorbed protein. Furthermore, FN adsorption is correlated to human osteoblast adhesion through morphology and actin cytoskeleton formation. Actin polymerization is in need of the formation of the protein network on the substrate's surface. Cell morphology is more rounded (as quantified by calculating the circularity of the cells by image analysis) the lower the degree of FN fibrillogenesis on the substrate.

JTD Keywords: Cell-adhesion, Conformational-changes, Electron-microscopy, Protein adsorption, Fractal dimension, Integrin binding, Biocompatibility, Monolayers, Matrix, Fibrillogenesis