Publications

by Keyword: Gel


By year:[ 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Punet, X., Levato, R., Bataille, I., Letourneur, D., Engel, E., Mateos-Timoneda, M. A., (2017). Polylactic acid organogel as versatile scaffolding technique Polymer 113, 81-91

Tissue engineering requires scaffolding techniques based on non-toxic processes that permits the fabrication of constructs with tailored properties. Here, a two-step methodology based on the gelation and precipitation of the poly(lactic) acid/ethyl lactate organogel system is presented. With this technique nanofibrous matrices that resemble natural extracellular matrix can be easily obtained, while allowing control over the mechanical properties of the device. Gelation temperature and the dynamics of the gelation of the organogel system are characterized, and the final mechanical and viscoelastic properties, as well as porosity, as function of the initial polymer concentration are described. We show that gelation temperature of the system is concentration independent and below 44.5 °C, which permits gelation at room temperature. Furthermore, mechanical properties are found in the range of the soft organic tissues, and the obtained micro-network architecture gives place to a flexible structure. Such structure presents tuneable elastic modulus and viscoelastic properties as function of nanofibers density. Moreover, centimetre-long tubular scaffolds with the diameter of medium-caliber blood vessels were produced. The fibrous nano-architecture mimics the native extracellular matrix fibres diameter and morphology was proven to be suitable to support endothelialization of the lumen of the tube. Thus, this strategy, based on biocompatible green compound might be promising for the fabrication of large 3D scaffolds for tissue engineering applications.

Keywords: Gel, Gelation, Nanofibrous, Organogel, PLA, Poly(lactic) acid, Scaffold


De Koker, Stefaan, Cui, Jiwei, Vanparijs, Nane, Albertazzi, Lorenzo, Grooten, Johan, Caruso, Frank, De Geest, Bruno G., (2016). Engineering polymer hydrogel nanoparticles for lymph node-targeted delivery Angewandte Chemie - International Edition 55, (4), 1334-1339

The induction of antigen-specific adaptive immunity exclusively occurs in lymphoid organs. As a consequence, the efficacy by which vaccines reach these tissues strongly affects the efficacy of the vaccine. Here, we report the design of polymer hydrogel nanoparticles that efficiently target multiple immune cell subsets in the draining lymph nodes. Nanoparticles are fabricated by infiltrating mesoporous silica particles (ca. 200 nm) with poly(methacrylic acid) followed by disulfide-based crosslinking and template removal. PEGylation of these nanoparticles does not affect their cellular association in vitro, but dramatically improves their lymphatic drainage in vivo. The functional relevance of these observations is further illustrated by the increased priming of antigen-specific T cells. Our findings highlight the potential of engineered hydrogel nanoparticles for the lymphatic delivery of antigens and immune-modulating compounds.

Keywords: Dendritic cells, Disulfides, Hydrogels, Nanoparticles, Vaccines


Estrada, L., Torres, A., Sarlabous, L., Jané, R., (2016). Evaluating respiratory muscle activity using a wireless sensor platform Engineering in Medicine and Biology Society (EMBC) 38th Annual International Conference of the IEEE , IEEE (Orlando, USA) , 5769-5772

Wireless sensors are an emerging technology that allows to assist physicians in the monitoring of patients health status. This approach can be used for the non-invasive recording of the electrical respiratory muscle activity of the diaphragm (EMGdi). In this work, we acquired the EMGdi signal of a healthy subject performing an inspiratory load test. To this end, the EMGdi activity was captured from a single channel of electromyography using a wireless platform which was compared with the EMGdi and the inspiratory mouth pressure (Pmouth) recorded with a conventional lab equipment. From the EMGdi signal we were able to evaluate the neural respiratory drive, a biomarker used for assessing the respiratory muscle function. In addition, we evaluated the breathing movement and the cardiac activity, estimating two cardio-respiratory parameters: the respiratory rate and the heart rate. The correlation between the two EMGdi signals and the Pmouth improved with increasing the respiratory load (Pearson's correlation coefficient ranges from 0.33 to 0.85). The neural respiratory drive estimated from both EMGdi signals showed a positive trend with an increase of the inspiratory load and being higher in the conventional EMGdi recording. The respiratory rate comparison between measurements revealed similar values of around 16 breaths per minute. The heart rate comparison showed a root mean error of less than 0.2 beats per minute which increased when incrementing the inspiratory load. In summary, this preliminary work explores the use of wireless devices to record the muscle respiratory activity to derive several physiological parameters. Its use can be an alternative to conventional measuring systems with the advantage of being portable, lightweight, flexible and operating at low energy. This technology can be attractive for medical staff and may have a positive impact in the way healthcare is being delivered.

Keywords: Biomedical monitoring, Electrodes, Medical services, Monitoring, Muscles, Wireless communication, Wireless sensor networks


Sánchez-Ferrero, Aitor, Mata, Álvaro, Mateos-Timoneda, Miguel A., Rodríguez-Cabello, José C., Alonso, Matilde, Planell, Josep, Engel, Elisabeth, (2015). Development of tailored and self-mineralizing citric acid-crosslinked hydrogels for in situ bone regeneration Biomaterials 68, 42-53

Bone tissue engineering demands alternatives overcoming the limitations of traditional approaches in the context of a constantly aging global population. In the present study, elastin-like recombinamers hydrogels were produced by means of carbodiimide-catalyzed crosslinking with citric acid, a molecule suggested to be essential for bone nanostructure. By systematically studying the effect of the relative abundance of reactive species on gelation and hydrogel properties such as functional groups content, degradation and structure, we were able to understand and to control the crosslinking reaction to achieve hydrogels mimicking the fibrillary nature of the extracellular matrix. By studying the effect of polymer concentration on scaffold mechanical properties, we were able to produce hydrogels with a stiffness value of 36.13 ± 10.72 kPa, previously suggested to be osteoinductive. Microstructured and mechanically-tailored hydrogels supported the growth of human mesenchymal stem cells and led to higher osteopontin expression in comparison to their non-tailored counterparts. Additionally, tailored hydrogels were able to rapidly self-mineralize in biomimetic conditions, evidencing that citric acid was successfully used both as a crosslinker and a bioactive molecule providing polymers with calcium phosphate nucleation capacity.

Keywords: Biomimetic material, Biomineralisation, Bone tissue engineering, Cross-linking, Hydrogel, Mesenchymal stem cell


Kovtun, A., Goeckelmann, M. J., Niclas, A. A., Montufar, E. B., Ginebra, M. P., Planell, J. A., Santin, M., Ignatius, A., (2015). In vivo performance of novel soybean/gelatin-based bioactive and injectable hydroxyapatite foams Acta Biomaterialia Elsevier Ltd 12, (1), 242-249

Major limitations of calcium phosphate cements (CPCs) are their relatively slow degradation rate and the lack of macropores allowing the ingrowth of bone tissue. The development of self-setting cement foams has been proposed as a suitable strategy to overcome these limitations. In previous work we developed a gelatine-based hydroxyapatite foam (G-foam), which exhibited good injectability and cohesion, interconnected porosity and good biocompatibility in vitro. In the present study we evaluated the in vivo performance of the G-foam. Furthermore, we investigated whether enrichment of the foam with soybean extract (SG-foam) increased its bioactivity. G-foam, SG-foam and non-foamed CPC were implanted in a critical-size bone defect in the distal femoral condyle of New Zealand white rabbits. Bone formation and degradation of the materials were investigated after 4, 12 and 20 weeks using histological and biomechanical methods. The foams maintained their macroporosity after injection and setting in vivo. Compared to non-foamed CPC, cellular degradation of the foams was considerably increased and accompanied by new bone formation. The additional functionalization with soybean extract in the SG-foam slightly reduced the degradation rate and positively influenced bone formation in the defect. Furthermore, both foams exhibited excellent biocompatibility, implying that these novel materials may be promising for clinical application in non-loaded bone defects.

Keywords: Bone regeneration, Calcium phosphate cement, Gelatine, Rabbit model, Soybean


Abadías, Clara, Serés, Carme, Torrent-Burgués, J., (2015). AFM in peak force mode applied to worn siloxane-hydrogel contact lenses Colloids and Surfaces B: Biointerfaces 128, 61-66

The objective of this work is to apply Atomic Force Microscopy in Peak Force mode to obtain topographic characteristics (mean roughness, root-mean-square roughness, skewness and kurtosis) and mechanical characteristics (adhesion, elastic modulus) of Siloxane-Hydrogel Soft Contact Lenses (CLs) of two different materials, Lotrafilcon B of Air Optix (AO) and Asmofilcon A of PremiO (P), after use (worn CLs). Thus, the results obtained with both materials will be compared, as well as the changes produced by the wear at a nanoscopic level. The results show significant changes in the topographic and mechanical characteristics of the CLs, at a nanoscopic level, due to wear. The AO CL show values of the topographic parameters lower than those of the P CL after wear, which correlates with a better comfort qualification given to the former by the wearers. A significant correlation has also been obtained between the adhesion values found after the use of the CLs with tear quality tests, both break-up-time and Schirmer.

Keywords: Adhesion, Atomic force microscopy-peak force mode, Surface topography, Worn siloxane-hydrogel contact lenses, Young modulus


Van Der Hofstadt, M., Hüttener, M., Juárez, A., Gomila, G., (2015). Nanoscale imaging of the growth and division of bacterial cells on planar substrates with the atomic force microscope Ultramicroscopy 154, 29-36

Abstract With the use of the atomic force microscope (AFM), the Nanomicrobiology field has advanced drastically. Due to the complexity of imaging living bacterial processes in their natural growing environments, improvements have come to a standstill. Here we show the in situ nanoscale imaging of the growth and division of single bacterial cells on planar substrates with the atomic force microscope. To achieve this, we minimized the lateral shear forces responsible for the detachment of weakly adsorbed bacteria on planar substrates with the use of the so called dynamic jumping mode with very soft cantilever probes. With this approach, gentle imaging conditions can be maintained for long periods of time, enabling the continuous imaging of the bacterial cell growth and division, even on planar substrates. Present results offer the possibility to observe living processes of untrapped bacteria weakly attached to planar substrates.

Keywords: Atomic Force Microscope (AFM), Living cell imaging, Bacteria division, Gelatine immobilization, Dynamic jumping mode


Seo, K. D., Kwak, B. K., Sánchez, S., Kim, D. S., (2015). Microfluidic-assisted fabrication of flexible and location traceable organo-motor IEEE Transactions on Nanobioscience 14, (3), 298-304

In this paper, we fabricate a flexible and location traceable micromotor, called organo-motor, assisted by microfluidic devices and with high throughput. The organo-motors are composed of organic hydrogel material, poly (ethylene glycol) diacrylate (PEGDA), which can provide the flexibility of their structure. For spatial and temporal traceability of the organo-motors under magnetic resonance imaging (MRI), superparamagnetic iron oxide nanoparticles (SPION; Fe3O4) were incorporated into the PEGDA microhydrogels. Furthermore, a thin layer of platinum (Pt) was deposited onto one side of the SPION-PEGDA microhydrogels providing geometrical asymmetry and catalytic propulsion in aqueous fluids containing hydrogen peroxide solution, H2O2. Furthermore, the motion of the organo-motor was controlled by a small external magnet enabled by the presence of SPION in the motor architecture.

Keywords: Flexible, Hydrogel, Magnetic resonance imaging, Microfluidics, Micromotor, Microparticle, Organo-motor, Poly (ethylene glycol) diacrylate, Self-propulsion, Superparamagnetic iron oxide nanoparticles


Urra, O., Casals, A., Jané, R., (2015). The impact of visual feedback on the motor control of the upper-limb Engineering in Medicine and Biology Society (EMBC) 37th Annual International Conference of the IEEE , IEEE (Milan, Italy) , 3945-3948

Stroke is a leading cause of adult disability with upper-limb hemiparesis being one of the most frequent consequences. Given that stroke only affects the paretic arm's control structure (the set of synergies and activation vectors needed to perform a movement), we propose that the control structure of the non-affected arm can serve as a physiological reference to rehabilitate the paretic arm. However, it is unclear how rehabilitation can effectively tune the control structure of a patient. The use of Visual Feedback (VF) is recommended to boost stroke rehabilitation, as it is able to positively modify neural mechanisms and improve motor performance. Thus, in this study we investigate whether VF can effectively modify the control structure of the upper-limb. We asked six neurologically intact subjects to perform a complete upper-limb rehabilitation routine comprised of 12 movements in absence and presence of VF. Our results indicate that VF significantly increases interlimb similarity both in terms of synergies and activation coefficients. However, the magnitude of improvement depended upon each subject. In general, VF brings the control structure of the nondominant side closer to the control structure of dominant side, suggesting that VF modifies the control structure towards more optimized motor patterns. This is especially interesting because stroke mainly affects the activation coefficients of patients and because it has been shown that the control of the affected side resembles that of the nondominant side. In conclusion, VF may enhance motor performance by effectively tuning the control-structure. Notably, this finding offers new insights to design improved stroke rehabilitation.

Keywords: Bars, Biomedical engineering, Electrodes, Electromyography, Mirrors, Muscles, Visualization


Castaño, O., Sachot, N., Xuriguera, E., Engel, E., Planell, J. A., Park, J. H., Jin, G. Z., Kim, T. H., Kim, J. H., Kim, H. W., (2014). Angiogenesis in bone regeneration: Tailored calcium release in hybrid fibrous scaffolds ACS Applied Materials and Interfaces 6, (10), 7512-7522

In bone regeneration, silicon-based calcium phosphate glasses (Bioglasses) have been widely used since the 1970s. However, they dissolve very slowly because of their high amount of Si (SiO2 > 45%). Recently, our group has found that calcium ions released by the degradation of glasses in which the job of silicon is done by just 5% of TiO2 are effective angiogenic promoters, because of their stimulation of a cell-membrane calcium sensing receptor (CaSR). Based on this, other focused tests on angiogenesis have found that Bioglasses also have the potential to be angiogenic promoters even with high contents of silicon (80%); however, their slow degradation is still a problem, as the levels of silicon cannot be decreased any lower than 45%. In this work, we propose a new generation of hybrid organically modified glasses, ormoglasses, that enable the levels of silicon to be reduced, therefore speeding up the degradation process. Using electrospinning as a faithful way to mimic the extracellular matrix (ECM), we successfully produced hybrid fibrous mats with three different contents of Si (40, 52, and 70%), and thus three different calcium ion release rates, using an ormoglass–polycaprolactone blend approach. These mats offered a good platform to evaluate different calcium release rates as osteogenic promoters in an in vivo subcutaneous environment. Complementary data were collected to complement Ca2+ release analysis, such as stiffness evaluation by AFM,

Keywords: Biological materials, Blood vessels, Calcium, Electrospinning, Glass, Hybrid materials, Silicon oxides, Sol-gel process, Sol-gels, Angiogenesis, Biological characterization, Calcium phosphate glass, Calcium-sensing receptors, Degradation process, Extracellular matrices, Organic/inorganic hybrid materials, ormoglasses, Silicon


Rajzer, I., Menaszek, E., Kwiatkowski, R., Planell, J. A., Castaño, O., (2014). Electrospun gelatin/poly( Materials Science and Engineering: C 44, 183-190

In this study gelatin (Gel) modified with calcium phosphate nanoparticles (SG5) and polycaprolactone (PCL) were used to prepare a 3D bi-layer scaffold by collecting electrospun PCL and gelatin/SG5 fibers separately in the same collector. The objective of this study was to combine the desired properties of PCL and Gel/SG5 in the same scaffold in order to enhance mineralization, thus improving the ability of the scaffold to bond to the bone tissue. The scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and the wide angle X-ray diffraction (WAXD) measurements confirmed that SG5 nanoparticles were successfully incorporated into the fibrous gelatin matrix. The composite Gel/SG5/PCL scaffold exhibited more enhanced mechanical properties than individual Gel and Gel/SG5 scaffolds. The presence of SG5 nanoparticles accelerated the nucleation and growth of apatite crystals on the surface of the composite Gel/SG5/PCL scaffold in simulated body fluid (SBF). The osteoblast response in vitro to developed electrospun scaffolds (PCL and Gel/SG5/PCL) was investigated by using normal human primary NHOst cell lines. NHOst cell culture studies showed that higher alkaline phosphatase (ALP) activity and better mineralization were obtained in the case of composite materials than in pure PCL scaffolds. The mechanically strong PCL scaffold served as a skeleton, while the Gel/SG5 fibers facilitated cell spreading and mineralization of the scaffold.

Keywords: Bilayer fibrous scaffold, Ceramic nanoparticles, Electrospinning, Gelatin, Polycaprolactone, Biomechanics, Bone, Calcium phosphate, Cell culture, Electrospinning, Fourier transform infrared spectroscopy, Mechanical properties, Mineralogy, Nanoparticles, Phosphatases, Polycaprolactone, Scanning electron microscopy, X ray diffraction, Polycaprolactone, Alkaline phosphatase activity, Bone tissue engineering, Calcium phosphate nanoparticles, Ceramic nanoparticles, Fibrous scaffolds, Gelatin, Simulated body fluids, Wide-angle x-ray diffraction, Electrospuns, Scaffolds (biology), Electrospinning


Giraldo, B. F., Tellez, J. P., Herrera, S., Benito, S., (2013). Analysis of heart rate variability in elderly patients with chronic heart failure during periodic breathing CinC 2013 Computing in Cardiology Conference (CinC) , IEEE (Zaragoza, Spain) , 991-994

Assessment of the dynamic interactions between cardiovascular signals can provide valuable information that improves the understanding of cardiovascular control. Heart rate variability (HRV) analysis is known to provide information about the autonomic heart rate modulation mechanism. Using the HRV signal, we aimed to obtain parameters for classifying patients with and without chronic heart failure (CHF), and with periodic breathing (PB), non-periodic breathing (nPB), and Cheyne-Stokes respiration (CSR) patterns. An electrocardiogram (ECG) and a respiratory flow signal were recorded in 36 elderly patients: 18 patients with CHF and 18 patients without CHF. According to the clinical criteria, the patients were classified into the follow groups: 19 patients with nPB pattern, 7 with PB pattern, 4 with Cheyne-Stokes respiration (CSR), and 6 non-classified patients (problems with respiratory signal). From the HRV signal, parameters in the time and frequency domain were calculated. Frequency domain parameters were the most discriminant in comparisons of patients with and without CHF: PTot (p = 0.02), PLF (p = 0.022) and fpHF (p = 0.021). For the comparison of the nPB vs. CSR patients groups, the best parameters were RMSSD (p = 0.028) and SDSD (p = 0.028). Therefore, the parameters appear to be suitable for enhanced diagnosis of decompensated CHF patients and the possibility of developed periodic breathing and a CSR pattern.

Keywords: cardiovascular system, diseases, electrocardiography, frequency-domain analysis, geriatrics, medical signal processing, patient diagnosis, pneumodynamics, signal classification, Cheyne-Stokes respiration patterns, ECG, autonomic heart rate modulation mechanism, cardiovascular control, cardiovascular signals, chronic heart failure, decompensated CHF patients, dynamic interaction assessment, elderly patients, electrocardiogram, enhanced diagnosis, frequency domain parameters, heart rate variability analysis, patient classification, periodic breathing, respiratory flow signal recording, Electrocardiography, Frequency modulation, Frequency-domain analysis, Heart rate variability, Senior citizens, Standards


Giraldo, B. F., Chaparro, J. A., Caminal, P., Benito, S., (2013). Characterization of the respiratory pattern variability of patients with different pressure support levels Engineering in Medicine and Biology Society (EMBC) 35th Annual International Conference of the IEEE , IEEE (Osaka, Japan) , 3849-3852

One of the most challenging problems in intensive care is still the process of discontinuing mechanical ventilation, called weaning process. Both an unnecessary delay in the discontinuation process and a weaning trial that is undertaken too early are undesirable. In this study, we analyzed respiratory pattern variability using the respiratory volume signal of patients submitted to two different levels of pressure support ventilation (PSV), prior to withdrawal of the mechanical ventilation. In order to characterize the respiratory pattern, we analyzed the following time series: inspiratory time, expiratory time, breath duration, tidal volume, fractional inspiratory time, mean inspiratory flow and rapid shallow breathing. Several autoregressive modeling techniques were considered: autoregressive models (AR), autoregressive moving average models (ARMA), and autoregressive models with exogenous input (ARX). The following classification methods were used: logistic regression (LR), linear discriminant analysis (LDA) and support vector machines (SVM). 20 patients on weaning trials from mechanical ventilation were analyzed. The patients, submitted to two different levels of PSV, were classified as low PSV and high PSV. The variability of the respiratory patterns of these patients were analyzed. The most relevant parameters were extracted using the classifiers methods. The best results were obtained with the interquartile range and the final prediction errors of AR, ARMA and ARX models. An accuracy of 95% (93% sensitivity and 90% specificity) was obtained when the interquartile range of the expiratory time and the breath duration time series were used a LDA model. All classifiers showed a good compromise between sensitivity and specificity.

Keywords: autoregressive moving average processes, feature extraction, medical signal processing, patient care, pneumodynamics, signal classification, support vector machines, time series, ARX, autoregressive modeling techniques, autoregressive models with exogenous input, autoregressive moving average model, breath duration time series, classification method, classifier method, discontinuing mechanical ventilation, expiratory time, feature extraction, final prediction errors, fractional inspiratory time, intensive care, interquartile range, linear discriminant analysis, logistic regression analysis, mean inspiratory flow, patient respiratory volume signal, pressure support level, pressure support ventilation, rapid shallow breathing, respiratory pattern variability characterization, support vector machines, tidal volume, weaning trial, Analytical models, Autoregressive processes, Biological system modeling, Estimation, Support vector machines, Time series analysis, Ventilation


Jané, R., Lazaro, J., Ruiz, P., Gil, E., Navajas, D., Farre, R., Laguna, P., (2013). Obstructive Sleep Apnea in a rat model: Effects of anesthesia on autonomic evaluation from heart rate variability measures CinC 2013 Computing in Cardiology Conference (CinC) , IEEE (Zaragoza, Spain) , 1011-1014

Rat model of Obstructive Sleep Apnea (OSA) is a realistic approach for studying physiological mechanisms involved in sleep. Rats are usually anesthetized and autonomic nervous system (ANS) could be blocked. This study aimed to assess the effect of anesthesia on ANS activity during OSA episodes. Seven male Sprague-Dawley rats were anesthetized intraperitoneally with urethane (1g/kg). The experiments were conducted applying airway obstructions, simulating 15s-apnea episodes for 15 minutes. Five signals were acquired: respiratory pressure and flow, SaO2, ECG and photoplethysmography (PPG). In total, 210 apnea episodes were studied. Normalized power spectrum of Pulse Rate Variability (PRV) was analyzed in the Low Frequency (LF) and High Frequency (HF) bands, for each episode in consecutive 15s intervals (before, during and after the apnea). All episodes showed changes in respiratory flow and SaO2 signal. Conversely, decreases in the amplitude fluctuations of PPG (DAP) were not observed. Normalized LF presented extremely low values during breathing (median=7,67%), suggesting inhibition of sympathetic system due to anesthetic effect. Subtle increases of LF were observed during apnea. HRV and PPG analysis during apnea could be an indirect tool to assess the effect and deep of anesthesia.

Keywords: electrocardiography, fluctuations, medical disorders, medical signal detection, medical signal processing, neurophysiology, photoplethysmography, pneumodynamics, sleep, ECG, SaO2 flow, SaO2 signal, airway obstructions, amplitude fluctuations, anesthesia effects, anesthetized nervous system, autonomic evaluation, autonomic nervous system, breathing, heart rate variability, high-frequency bands, low-frequency bands, male Sprague-Dawley rats, normalized power spectrum, obstructive sleep apnea, photoplethysmography, physiological mechanisms, pulse rate variability, rat model, respiratory flow, respiratory pressure, signal acquisition, sympathetic system inhibition, time 15 min, time 15 s, Abstracts, Atmospheric modeling, Computational modeling, Electrocardiography, Rats, Resonant frequency


Azevedo, S., Diéguez, L., Carvalho, P., Carneiro, J. O., Teixeira, V., Martínez, E., Samitier, J., (2012). Deposition of ITO thin films onto PMMA substrates for waveguide based biosensing devices Journal of Nano Research 17, 75-83

Biosensors' research filed has clearly been changing towards the production of multifunctional and innovative design concepts to address the needs related with sensitivity and selectivity of the devices. More recently, waveguide biosensors, that do not require any label procedure to detect biomolecules adsorbed on its surface, have been pointed out as one of the most promising technologies for the production of biosensing devices with enhanced performance. Moreover the combination of optical and electrochemical measurements through the integration of transparent and conducting oxides in the multilayer structures can greatly enhance the biosensors' sensitivity. Furthermore, the integration of polymeric substrates may bring powerful advantages in comparison with silicon based ones. The biosensors will have a lower production costs being possible to disposable them after use ("one use sensor chip"). This research work represents a preliminary study about the influence of substrate temperature on the overall properties of ITO thin films deposited by DC magnetron sputtering onto 0,5 mm thick PMMA sheets.

Keywords: ITO thin films, PMMA sheets, Waveguide biosensing devices, Biosensing devices, Conducting oxides, Dc magnetron sputtering, Electrochemical measurements, Enhanced performance, Innovative design, ITO thin films, Multilayer structures, Overall properties, PMMA sheets, Polymeric substrate, Production cost, Sensor chips, Silicon-based, Substrate temperature, Biosensors, Deposition, Design, Film preparation, Optical multilayers, Thin films, Vapor deposition, Waveguides, Substrates


Yue, J. J., Morgenstern, R., Morgenstern, C., Lauryssen, C., (2011). Shape memory hydrogels - A novel material for treating age-related degenerative conditions of the Spine European Musculoskeletal Review 6, (3), 184-188

Hydrogels are water-insoluble hydrophilic polymers used in a wide range of medical products such as, drug delivery, tissue replacement, heart surgery, gynaecology, ophthalmology, plastic surgery and orthopaedic surgery. These polymers exhibit low toxicity, reduced tissue adherence, and are highly biocompatible. A class of hydrogels, hydrolysed polyacrylonitriles, possess unique shape memory properties, which, when combined with biodurability, mechanical strength and viscoelasticity make them ideal for treating certain degenerative conditions of the spine. Animal and other in vitro studies have shown that the hydrogel is biocompatible and well tolerated by host tissues. This article focuses on two specific indications in spine surgery that demonstrate the potential of hydrogel-based technology to provide significant treatment advantages.

Keywords: Biocompatibility, Degenerative disc disease, Hydrolysed polyacrylonitrile, Minimally invasive surgery, Shape memory hydrogel, Spinal stenosis


Banos, R. C., Vivero, A., Aznar, S., Garcia, J., Pons, M., Madrid, C., Juarez, A., (2009). Differential regulation of horizontally acquired and core genome genes by the bacterial modulator H-NS PLoS Genetics 5, (6), 8

Horizontal acquisition of DNA by bacteria dramatically increases genetic diversity and hence successful bacterial colonization of several niches, including the human host. A relevant issue is how this newly acquired DNA interacts and integrates in the regulatory networks of the bacterial cell. The global modulator H-NS targets both core genome and HGT genes and silences gene expression in response to external stimuli such as osmolarity and temperature. Here we provide evidence that H-NS discriminates and differentially modulates core and HGT DNA. As an example of this, plasmid R27-encoded H-NS protein has evolved to selectively silence HGT genes and does not interfere with core genome regulation. In turn, differential regulation of both gene lineages by resident chromosomal H-NS requires a helper protein: the Hha protein. Tight silencing of HGT DNA is accomplished by H-NS-Hha complexes. In contrast, core genes are modulated by H-NS homoligomers. Remarkably, the presence of Hha-like proteins is restricted to the Enterobacteriaceae. In addition, conjugative plasmids encoding H-NS variants have hitherto been isolated only from members of the family. Thus, the H-NS system in enteric bacteria presents unique evolutionary features. The capacity to selectively discriminate between core and HGT DNA may help to maintain horizontally transmitted DNA in silent form and may give these bacteria a competitive advantage in adapting to new environments, including host colonization.

Keywords: 2A strain 2457T, Escherichia-Coli, Salmonella-Enterica, Protein, DNA, Expression, Binding, HHA, Shigella, Plasmid


Montufar, E. B., Traykova, T., Schacht, E., Ambrosio, L., Santin, M., Planell, J. A., Ginebra, M. P., (2009). Self-hardening calcium deficient hydroxyapatite/gelatine foams for bone regeneration Journal of Materials Science-Materials in Medicine 22nd European Conference on Biomaterials , Springer Netherlands (Lausanne, Switzerland) 21, (3), 863-869

In this work gelatine was used as multifunctional additive to obtain injectable self-setting hydroxyapatite/gelatine composite foams for bone regeneration. The foaming and colloidal stabilization properties of gelatine are well known in food and pharmaceutical applications. Solid foams were obtained by foaming liquid gelatine solutions at 50A degrees C, followed by mixing them with a cement powder consisting of alpha tricalcium phosphate. Gelatine addition improved the cohesion and injectability of the cement paste. After setting the foamed paste transformed into a calcium deficient hydroxyapatite. The final porosity, pore interconnectivity and pore size were modulated by modifying the gelatine content in the liquid phase.

Keywords: Phosphate cement, Gelatin, Behavior


Banos, R. C., Pons, J. I., Madrid, C., Juarez, A., (2008). A global modulatory role for the Yersinia enterocolitica H-NS protein Microbiology 154, (5), 1281-1289

The H-NS protein plays a significant role in the modulation of gene expression in Gram-negative bacteria. Whereas isolation and characterization of hns mutants in Escherichia coli, Salmonella and Shigella represented critical steps to gain insight into the modulatory role of H-NS, it has hitherto not been possible to isolate hns mutants in Yersinia. The hns mutation is considered to be deleterious in this genus. To study the modulatory role of H-NS in Yersinia we circumvented hns lethality by expressing in Y. enterocolitica a truncated H-NS protein known to exhibit anti-H-NS activity in E. coli (H-NST(EPEC)). Y. enterocolitica cells expressing H-NST(EPEC) showed an altered growth rate and several differences in the protein expression pattern, including the ProV protein, which is modulated by H-NS in other enteric bacteria. To further confirm that H-NST(EPEC) expression in Yersinia can be used to demonstrate H-NS-dependent regulation in this genus, we used this approach to show that H-NS modulates expression of the YmoA protein.

Keywords: Bacterial Proteins/biosynthesis/genetics/ physiology, DNA-Binding Proteins/biosynthesis/genetics/ physiology, Electrophoresis, Gel, Two-Dimensional, Gene Expression Profiling, Gene Expression Regulation, Bacterial, Genes, Essential, Proteome/analysis, RNA, Bacterial/biosynthesis, RNA, Messenger/biosynthesis, Reverse Transcriptase Polymerase Chain Reaction, Sequence Deletion, Yersinia enterocolitica/chemistry/genetics/growth & development/ physiology


Manara, S., Paolucci, F., Palazzo, B., Marcaccio, M., Foresti, E., Tosi, G., Sabbatini, S., Sabatino, P., Altankov, G., Roveri, N., (2008). Electrochemically-assisted deposition of biomimetic hydroxyapatite-collagen coatings on titanium plate Inorganica Chimica Acta 361, (6), 1634-1645

A biomimetic bone-like composite, made of self-assembled collagen fibrils and carbonate hydroxyapatite nanocrystals, has been performed by an electrochemically-assisted deposition on titanium plate. The electrolytic processes have been carried out using a single type I collagen molecules suspension in a diluted Ca(NO3)(2) and NH4H2PO4 solution at room temperature and applying a constant current for different periods of time. Using the same electrochemical conditions, carbonate hydroxyapatite nanocrystals or reconstituted collagen. brils coatings were obtained. The reconstituted collagen. brils, hydroxyapatite nanocrystals and collagen fibrils/apatite nanocrystals coatings have been characterized chemically, structurally and morphologically, as well as for their ability to bind fibronectin (FN). Fourier Transform Infrared microscopy has been used to map the topographic distribution of the coating components at different times of electrochemical deposition, allowing to single out the individual deposition steps. Moreover, roughness of Ti plate has been found to affect appreciably the nucleation region of the inorganic nanocrystals. Laser scanning confocal microscopy has been used to characterize the FN adsorption pattern on a synthetic biomimetic apatitic phase, which exhibits a higher affinity when it is inter-grown with the collagen fibrils. The results offer auspicious applications in the preparation of medical devices such as biomimetic bone-like composite-coated metallic implants.

Keywords: Hydroxyapatite-collagen coating, Electrochemically-assisted deposition, Micro-imaging FTIR spectroscopy, Laser scanning confocal microscopy, Biomimetic crystal growth, Fibronectin binding


Comments are closed