DONATE

Publications

by Keyword: Hybrid materials

Sachot, Nadège, Castano, Oscar, Planell, Josep A., Engel, Elisabeth, (2015). Optimization of blend parameters for the fabrication of polycaprolactone-silicon based ormoglass nanofibers by electrospinning Journal of Biomedical Materials Research - Part B: Applied Biomaterials , 103, (6), 1287–1293

Electrospinning is a method that can be used to efficiently produce scaffolds that mimic the fibrous structure of natural tissue, such as muscle structures or the extracellular matrix of bone. The technique is often used as a way of depositing composites (organic/inorganic materials) to obtain bioactive nanofibers which have the requisite mechanical properties for use in tissue engineering. However, many factors can influence the formation and collection of fibers, including experimental variables such as the parameters of the solution of the electrospun slurry. In this study, we assessed the influence of the polymer concentration, glass content and glass hydrolysis level on the morphology and thickness of fibers produced by electrospinning for a PCL-(Si-Ca-P2) bioactive ormoglass—organically modified glass—blend. Based on previous assays, this combination of materials shows good angiogenic and osteogenic properties, which gives it great potential for use in tissue engineering. The results of our study showed that blend preparation directly affected the features of the resulting fibers, and when the parameters of the blend are precisely controlled, fibers with a regular diameter could be produced fairly easily when 2,2,2-trifluoroethanol was used as a solvent instead of tetrahydrofuran. The diameter of the homogeneous fibers ranged from 360 to 620 nm depending on the experimental conditions used. This demonstrates that experimental optimization of the electrospinning process is crucial in order to obtain a deposit of hybrid nanofibers with a regular shape.

JTD Keywords: Si-based glasses, Ormoglass, Electrospinning, Hybrid materials, Bioactivity, Angiogenesis


Castaño, O., Sachot, N., Xuriguera, E., Engel, E., Planell, J. A., Park, J. H., Jin, G. Z., Kim, T. H., Kim, J. H., Kim, H. W., (2014). Angiogenesis in bone regeneration: Tailored calcium release in hybrid fibrous scaffolds ACS Applied Materials & Interfaces 6, (10), 7512-7522

In bone regeneration, silicon-based calcium phosphate glasses (Bioglasses) have been widely used since the 1970s. However, they dissolve very slowly because of their high amount of Si (SiO2 > 45%). Recently, our group has found that calcium ions released by the degradation of glasses in which the job of silicon is done by just 5% of TiO2 are effective angiogenic promoters, because of their stimulation of a cell-membrane calcium sensing receptor (CaSR). Based on this, other focused tests on angiogenesis have found that Bioglasses also have the potential to be angiogenic promoters even with high contents of silicon (80%); however, their slow degradation is still a problem, as the levels of silicon cannot be decreased any lower than 45%. In this work, we propose a new generation of hybrid organically modified glasses, ormoglasses, that enable the levels of silicon to be reduced, therefore speeding up the degradation process. Using electrospinning as a faithful way to mimic the extracellular matrix (ECM), we successfully produced hybrid fibrous mats with three different contents of Si (40, 52, and 70%), and thus three different calcium ion release rates, using an ormoglass–polycaprolactone blend approach. These mats offered a good platform to evaluate different calcium release rates as osteogenic promoters in an in vivo subcutaneous environment. Complementary data were collected to complement Ca2+ release analysis, such as stiffness evaluation by AFM, ζ-potential, morphology evaluation by FESEM, proliferation and differentiation analysis, as well as in vivo subcutaneous implantations. Material and biological characterization suggested that compositions of organic/inorganic hybrid materials with a Si content equivalent to 40%, which were also those that released more calcium, were osteogenic. They also showed a greater ability to form blood vessels. These results suggest that Si-based ormoglasses can be considered an efficient tool for calcium release modulation, which could play a key role in the angiogenic promoting process.

JTD Keywords: Biological materials, Blood vessels, Calcium, Electrospinning, Glass, Hybrid materials, Silicon oxides, Sol-gel process, Sol-gels, Angiogenesis, Biological characterization, Calcium phosphate glass, Calcium-sensing receptors, Degradation process, Extracellular matrices, Organic/inorganic hybrid materials, ormoglasses, Silicon


Sachot, N., Engel, E., Castaño, O., (2014). Hybrid organic-inorganic scaffolding biomaterials for regenerative therapies Current Organic Chemistry , 18, (18), 2299-2314

The introduction of hybrid materials in regenerative medicine has solved some problems related to the mechanical and bioactive properties of biomaterials. Calcium phosphates and their derivatives have provided the basis for inorganic components, thanks to their good bioactivity, especially in bone regeneration. When mixed with biodegradable polymers, the result is a synergic association that mimics the composition of many tissues of the human body and, additionally, exhibits suitable mechanical properties. Together with the development of nanotechnology and new synthesis methods, hybrids offer a promising option for the development of a third or fourth generation of smart biomaterials and scaffolds to guide the regeneration of natural tissues, with an optimum efficiency/cost ratio. Their potential bioactivity, as well as other valuable features of hybrids, open promising new pathways for their use in bone regeneration and other tissue repair therapies. This review provides a comprehensive overview of the different hybrid organic-inorganic scaffolding biomaterials developed so far for regenerative therapies, especially in bone. It also looks at the potential for research into hybrid materials for other, softer tissues, which is still at an initial stage, but with very promising results.

JTD Keywords: Biodegradable polymer, Hybrid materials, Nanoparticles, Ormoglass