Publications

by Keyword: Immunomodulation


By year:[ 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Noguera-Ortega, Estela, Secanella-Fandos, Silvia, Eraña, Hasier, Gasión, Jofre, Rabanal, Rosa M., Luquin, Marina, Torrents, Eduard, Julián, Esther, (2016). Nonpathogenic Mycobacterium brumae inhibits bladder cancer growth in vitro, ex vivo, and in vivo European Urology Focus 2, (1), 67-76

Background Bacillus Calmette-Guérin (BCG) prevents tumour recurrence and progression in non–muscle-invasive bladder cancer (BC). However, common adverse events occur, including BCG infections. Objective To find a mycobacterium with similar or superior antitumour activity to BCG but with greater safety. Design In vitro, ex vivo, and in vivo comparisons of the antitumour efficacy of nonpathogenic mycobacteria and BCG. Intervention The in vitro antitumour activity of a broad set of mycobacteria was studied in seven different BC cell lines. The most efficacious was selected and its ex vivo capacity to activate immune cells and its in vivo antitumour activity in an orthotopic murine model of BC were investigated. Outcome measurements and statistical analysis Growth inhibition of BC cells was the primary outcome measurement. Parametric and nonparametric tests were use to analyse the in vitro results, and a Kaplan-Meier test was applied to measure survival in mycobacteria-treated tumour-bearing mice. Results and limitations Mycobacterium brumae is superior to BCG in inhibiting low-grade BC cell growth, and has similar effects to BCG against high-grade cells. M. brumae triggers an indirect antitumour response by activating macrophages and the cytotoxic activity of peripheral blood cells against BC cells. Although no significant differences were observed between BCG and M. brumae treatments in mice, M. brumae treatment prolonged survival in comparison to BCG treatment in tumour-bearing mice. In contrast to BCG, M. brumae does not persist intracellularly or in tumour-bearing mice, so the risk of infection is lower. Conclusions Our preclinical data suggest that M. brumae represents a safe and efficacious candidate as a therapeutic agent for non–muscle-invasive BC. Patient summary We investigated the antitumour activity of nonpathogenic mycobacteria in in vitro and in vivo models of non–muscle-invasive bladder cancer. We found that Mycobacterium brumae effectively inhibits bladder cancer growth and helps the host immune system to eradicate cancer cells, and is a promising agent for antitumour immunotherapy.

Keywords: Animal models, Bacillus Calmette-Guérin, Cytokines, Immunomodulation, Immunotherapy, Mycobacteria, Urothelial cell line


Cervera, M., Esteban, O., Gil, M., Gorris, M. T., Martínez, M. C., Peña, L., Cambra, M., (2010). Transgenic expression in citrus of single-chain antibody fragments specific to Citrus tristeza virus confers virus resistance Transgenic Research 19, (6), 1001-1015

Citrus tristeza virus (CTV) causes one of the most destructive viral diseases of citrus worldwide. Generation of resistant citrus genotypes through genetic engineering could be a good alternative to control CTV. To study whether production of single-chain variable fragment (scFv) antibodies in citrus could interfere and immunomodulate CTV infection, transgenic Mexican lime plants expressing two different scFv constructs, separately and simultaneously, were generated. These constructs derived from the well-referenced monoclonal antibodies 3DF1 and 3CA5, specific against CTV p25 major coat protein, whose mixture is able to detect all CTV isolates characterized so far. ScFv accumulation levels were low and could be readily detected just in four transgenic lines. Twelve homogeneous and vigorous lines were propagated and CTV-challenged by graft inoculation with an aggressive CTV strain. A clear protective effect was observed in most transgenic lines, which showed resistance in up to 40-60% of propagations. Besides, both a delay in symptom appearance and attenuation of symptom intensity were observed in infected transgenic plants compared with control plants. This effect was more evident in lines carrying the 3DF1scFv transgene, being probably related to the biological functions of the epitope recognized by this antibody. This is the first report describing successful protection against a pathogen in woody transgenic plants by ectopic expression of scFv recombinant antibodies.

Keywords: CTV control, Immunomodulation, Plantibodies, Recombinant antibodies, Transgenic citrus