DONATE

Publications

by Keyword: Indoor air pollution

Pinheiro, ND, Freire, RT, Conrado, JAM, Batista, AD, Petruci, JFD, (2021). Paper-based optoelectronic nose for identification of indoor air pollution caused by 3D printing thermoplastic filaments Analytica Chimica Acta 1143, 1-8

Commercial printers based on fused deposition modeling (FDM) are widely adopted for 3D printing applications. This method consists of the heating of polymeric filaments over the melting point followed by their deposition onto a solid base to create the desirable 3D structure. Prior investigation using chromatographic techniques has shown that chemical compounds (e.g. VOCs), which can be harmful to users, are emitted during the printing process, producing adverse effects to human health and contributing to indoor air pollution. In this study, we present a simple, inexpensive and disposable paperbased optoelectronic nose (i.e. colorimetric sensor array) to identify the gaseous emission fingerprint of five different types of thermoplastic filaments (ABS, TPU, PETG, TRITAN and PLA) in the indoor environment. The optoelectronic nose is comprised of selected 15 dyes with different chemical properties deposited onto a microfluidic paper-based device with spots of 5 mm in diameter each. Digital images were obtained from an ordinary flatbed scanner, and the RGB information collected before and after air exposure was extracted by using an automated routine designed in MATLAB, in which the color changes provide a unique fingerprint for each filament in 5 min of printing. Reproducibility was obtained in the range of 2.5-10% (RSD). Hierarchical clustering analysis (HCA) and principal component analysis (PCA) were successfully employed, showing suitable discrimination of all studied filaments and the non-polluted air. Besides, air spiked with vapors of the most representative VOCs were analyzed by the optoelectronic nose and visually compared to each filament. The described study shows the potential of the paper-based optoelectronic nose to monitor possible hazard emissions from 3D printers. (C) 2020 Elsevier B.V. All rights reserved.

JTD Keywords: 3d printing, colorimetric sensor array, indoor air pollution, optoelectronic nose, paper-based, 3d printing, Colorimetric sensor array, Emissions, Indoor air pollution, Optoelectronic nose, Paper-based, Thermoplastic filaments


Palleja, T., Balsa, R., Tresanchez, M., Moreno, J., Teixido, M., Font, D., Marco, S., Pomareda, V., Palacin, J., (2014). Corridor gas-leak localization using a mobile Robot with a photo ionization detector sensor Sensor Letters , 12, (6-7), 974-977

The use of an autonomous mobile robot to locate gas-leaks and air quality monitoring in indoor environments are promising tasks that will avoid risky human operations. However, these are challenging tasks due to the chaotic gas profile propagation originated by uncontrolled air flows. This paper proposes the localization of an acetone gas-leak in a 44 m-length indoor corridor with a mobile robot equipped with a PID sensor. This paper assesses the influence of the mobile robot velocity and the relative height of the PID sensor in the profile of the measurements. The results show weak influence of the robot velocity and strong influence of the relative height of the PID sensor. An estimate of the gas-leak location is also performed by computing the center of mass of the highest gas concentrations.

JTD Keywords: Gas source detection, LIDAR sensor, Mobile robot, PID sensor, SLAM, Acetone, Air quality, Gases, Indoor air pollution, Mobile robots, Robots, Air quality monitoring, Autonomous Mobile Robot, Gas sources, Indoor environment, Leak localization, LIDAR sensors, Profile propagation, SLAM, Ionization of gases