DONATE

Publications

by Keyword: Magnetic control

Villa, Katherine, Parmar, Jemish, Vilela, Diana, Sánchez, Samuel, (2018). Metal-oxide-based microjets for the simultaneous removal of organic pollutants and heavy metals ACS Applied Materials and Interfaces 10, (24), 20478-20486

Water contamination from industrial and anthropogenic activities is nowadays a major issue in many countries worldwide. To address this problem, efficient water treatment technologies are required. Recent efforts have focused on the development of self-propelled micromotors that provide enhanced micromixing and mass transfer by the transportation of reactive species, resulting in higher decontamination rates. However, a real application of these micromotors is still limited due to the high cost associated to their fabrication process. Here, we present Fe2O3-decorated SiO2/MnO2 microjets for the simultaneous removal of industrial organic pollutants and heavy metals present in wastewater. These microjets were synthesized by low-cost and scalable methods. They exhibit an average speed of 485 ± 32 μm s–1 (∼28 body length per s) at 7% H2O2, which is the highest reported for MnO2-based tubular micromotors. Furthermore, the photocatalytic and adsorbent properties of the microjets enable the efficient degradation of organic pollutants, such as tetracycline and rhodamine B under visible light irradiation, as well as the removal of heavy metal ions, such as Cd2+ and Pb2+.

JTD Keywords: Micromotors, Photocatalytic, Water purification, Fenton, Magnetic control, Iron oxide, Manganese oxide


Vilela, D., Stanton, M. M., Parmar, J., Sánchez, S., (2017). Microbots decorated with silver nanoparticles kill bacteria in aqueous media ACS Applied Materials & Interfaces 9, (27), 22093-22100

Water contamination is one of the most persistent problems of public health. Resistance of some pathogens to conventional disinfectants can require the combination of multiple disinfectants or increased disinfectant doses, which may produce harmful byproducts. Here, we describe an efficient method for disinfecting Escherichia coli and removing the bacteria from contaminated water using water self-propelled Janus microbots decorated with silver nanoparticles (AgNPs). The structure of a spherical Janus microbot consists of a magnesium (Mg) microparticle as a template that also functions as propulsion source by producing hydrogen bubbles when in contact with water, an inner iron (Fe) magnetic layer for their remote guidance and collection, and an outer AgNP-coated gold (Au) layer for bacterial adhesion and improving bactericidal properties. The active motion of microbots increases the chances of the contact of AgNPs on the microbot surface with bacteria, which provokes the selective Ag+ release in their cytoplasm, and the microbot self-propulsion increases the diffusion of the released Ag+ ions. In addition, the AgNP-coated Au cap of the microbots has a dual capability of capturing bacteria and then killing them. Thus, we have demonstrated that AgNP-coated Janus microbots are capable of efficiently killing more than 80% of E. coli compared with colloidal AgNPs that killed only less than 35% of E. coli in contaminated water solutions in 15 min. After capture and extermination of bacteria, magnetic properties of the cap allow collection of microbots from water along with the captured dead bacteria, leaving water with no biological contaminants. The presented biocompatible Janus microbots offer an encouraging method for rapid disinfection of water.

JTD Keywords: Bactericidal, Magnetic control, Micromotors, Microswimmers, Self-propulsion, Silver nanoparticles


Khalil, I. S. M., Magdanz, V., Sánchez, S., Schmidt, O. G., Misra, S., (2015). Precise localization and control of catalytic janus micromotors using weak magnetic fields International Journal of Advanced Robotic Systems , 12, (2), 1-7

We experimentally demonstrate the precise localization of spherical Pt-Silica Janus micromotors (diameter 5 μm) under the influence of controlled magnetic fields. First, we control the motion of the Janus micromotors in two-dimensional (2D) space. The control system achieves precise localization within an average region-of-convergence of 7 μm. Second, we show that these micromotors provide sufficient propulsion force, allowing them to overcome drag and gravitational forces and move both downwards and upwards. This propulsion is studied by moving the micromotors in three-dimensional (3D) space. The micromotors move downwards and upwards at average speeds of 19.1 μm/s and 9.8 μm/s, respectively. Moreover, our closed-loop control system achieves localization in 3D space within an average region-of-convergence of 6.3 μm in diameter. The precise motion control and localization of the Janus micromotors in 2D and 3D spaces provides broad possibilities for nanotechnology applications.

JTD Keywords: 3D space, Localization, Magnetic control, Micromotors, Self-propulsion