Publications

by Keyword: NAD


By year:[ 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Matalonga, J., Glaria, E., Bresque, M., Escande, C., Carbó, J. M., Kiefer, K., Vicente, R., León, T. E., Beceiro, S., Pascual-García, M., Serret, J., Sanjurjo, L., Morón-Ros, S., Riera, A., Paytubi, S., Juarez, A., Sotillo, F., Lindbom, L., Caelles, C., Sarrias, M. R., Sancho, J., Castrillo, A., Chini, E. N., Valledor, A. F., (2017). The nuclear receptor LXR limits bacterial infection of host macrophages through a mechanism that impacts cellular NAD metabolism Cell Reports 18, (5), 1241-1255

Macrophages exert potent effector functions against invading microorganisms but constitute, paradoxically, a preferential niche for many bacterial strains to replicate. Using a model of infection by Salmonella Typhimurium, we have identified a molecular mechanism regulated by the nuclear receptor LXR that limits infection of host macrophages through transcriptional activation of the multifunctional enzyme CD38. LXR agonists reduced the intracellular levels of NAD+ in a CD38-dependent manner, counteracting pathogen-induced changes in macrophage morphology and the distribution of the F-actin cytoskeleton and reducing the capability of non-opsonized Salmonella to infect macrophages. Remarkably, pharmacological treatment with an LXR agonist ameliorated clinical signs associated with Salmonella infection in vivo, and these effects were dependent on CD38 expression in bone-marrow-derived cells. Altogether, this work reveals an unappreciated role for CD38 in bacterial-host cell interaction that can be pharmacologically exploited by activation of the LXR pathway.

Keywords: Bacterial infection, CD38, Cytoskeleton, LXR, Macrophage, NAD, Nuclear receptor


Coelho, N. M., Llopis-Hernández, V., Salmerón-Sánchez, M., Altankov, G., (2016). Dynamic reorganization and enzymatic remodeling of type IV collagen at cell–biomaterial interface Advances in Protein Chemistry and Structural Biology (ed. Christo, Z. Christov), Academic Press (San Diego, USA) 105, 81-104

Abstract Vascular basement membrane remodeling involves assembly and degradation of its main constituents, type IV collagen (Col IV) and laminin, which is critical during development, angiogenesis, and tissue repair. Remodeling can also occur at cell–biomaterials interface altering significantly the biocompatibility of implants. Here we describe the fate of adsorbed Col IV in contact with endothelial cells adhering on positively charged NH2 or hydrophobic CH3 substrata, both based on self-assembly monolayers (SAMs) and studied alone or mixed in different proportions. AFM studies revealed distinct pattern of adsorbed Col IV, varying from single molecular deposition on pure NH2 to network-like assembly on mixed SAMs, turning to big globular aggregates on bare CH3. Human umbilical endothelial cells (HUVECs) interact better with Col IV adsorbed as single molecules on NH2 surface and readily rearrange it in fibril-like pattern that coincide with secreted fibronectin fibrils. The cells show flattened morphology and well-developed focal adhesion complexes that are rich on phosphorylated FAK while expressing markedly low pericellular proteolytic activity. Conversely, on hydrophobic CH3 substrata HUVECs showed abrogated spreading and FAK phosphorylation, combined with less reorganization of the aggregated Col IV and significantly increased proteolytic activity. The later involves both MMP-2 and MMP-9, as measured by zymography and FITC-Col IV release. The mixed SAMs support intermediate remodeling activity. Taken together these results show that chemical functionalization combined with Col IV preadsorption provides a tool for guiding the endothelial cells behavior and pericellular proteolytic activity, events that strongly affect the fate of cardiovascular implants.

Keywords: Type IV collagen, Adsorption, Remodeling, Pericellular proteolysis, Reorganization, Substratum chemistry, CH3 and NH2 groups, Self-assembly monolayers


Rajasekaran, V., Aranda, J., Casals, A., (2015). Compliant gait assistance triggered by user intention Engineering in Medicine and Biology Society (EMBC) 37th Annual International Conference of the IEEE , IEEE (Milan, Italy) , 3885-3888

An automatic gait initialization strategy based on user intention sensing in the context of rehabilitation with a lower-limb wearable robot is proposed and evaluated. The proposed strategy involves monitoring the human-orthosis interaction torques and initial position deviation to determine the gait initiation instant and to modify orthosis operation for gait assistance, when needed. During gait, the compliant control algorithm relies on the adaptation of the joints' stiffness in function of their interaction torques and their deviation from the desired trajectories, while maintaining the dynamic stability. As a reference input, the average of a set of recorded gaits obtained from healthy subjects is used. The algorithm has been tested with five healthy subjects showing its efficient behavior in initiating the gait and maintaining the equilibrium while walking in presence of external forces. The work is performed as a preliminary study to assist patients suffering from incomplete Spinal cord injury and Stroke.

Keywords: Biomedical monitoring, Exoskeletons, Joints, Knee, Legged locomotion, Trajectory, Exoskeleton, adaptive control, gait assistance, gait initiation, rehabilitation, wearable robot


Cuervo, A., Dans, P. D., Carrascosa, J. L., Orozco, M., Gomila, G., Fumagalli, L., (2014). Direct measurement of the dielectric polarization properties of DNA Proceedings of the National Academy of Sciences of the United States of America 111, (35), E3624-E3630

The electric polarizability of DNA, represented by the dielectric constant, is a key intrinsic property that modulates DNA interaction with effector proteins. Surprisingly, it has so far remained unknown owing to the lack of experimental tools able to access it. Here, we experimentally resolved it by detecting the ultraweak polarization forces of DNA inside single T7 bacteriophages particles using electrostatic force microscopy. In contrast to the common assumption of low-polarizable behavior like proteins (εr ∼ 2-4), we found that the DNA dielectric constant is ∼8, considerably higher than the value of ∼3 found for capsid proteins. State-of-the-art molecular dynamic simulations confirm the experimental findings, which result in sensibly decreased DNA interaction free energy than normally predicted by Poisson-Boltzmann methods. Our findings reveal a property at the basis of DNA structure and functions that is needed for realistic theoretical descriptions, and illustrate the synergetic power of scanning probe microscopy and theoretical computation techniques.

Keywords: Atomic force microscopy, Atomistic simulations, DNA packaging, DNA-ligand binding, Poisson-Boltzmann equation, capsid protein, DNA, double stranded DNA, amino acid composition, article, atomic force microscopy, bacteriophage, bacteriophage T7, dielectric constant, dipole, DNA binding, DNA packaging, DNA structure, electron microscopy, ligand binding, nonhuman, polarization, priority journal, protein analysis, protein DNA interaction, scanning probe microscopy, static electricity, virion, virus capsid, virus particle, atomic force microscopy, atomistic simulations, DNA packaging, DNA-ligand binding, Poisson-Boltzmann equation, Bacteriophage T7, Capsid, Cations, Dielectric Spectroscopy, DNA, DNA, Viral, DNA-Binding Proteins, Electrochemical Techniques, Ligands, Microscopy, Atomic Force, Models, Chemical, Nuclear Proteins


Melo, E., Cárdenes, N., Garreta, E., Luque, T., Rojas, M., Navajas, D., Farré, R., (2014). Inhomogeneity of local stiffness in the extracellular matrix scaffold of fibrotic mouse lungs Journal of the Mechanical Behavior of Biomedical Materials 37, 186-195

Lung disease models are useful to study how cell engraftment, proliferation and differentiation are modulated in lung bioengineering. The aim of this work was to characterize the local stiffness of decellularized lungs in aged and fibrotic mice. Mice (2- and 24-month old; 14 of each) with lung fibrosis (N=20) and healthy controls (N=8) were euthanized after 11 days of intratracheal bleomycin (fibrosis) or saline (controls) infusion. The lungs were excised, decellularized by a conventional detergent-based (sodium-dodecyl sulfate) procedure and slices of the acellular lungs were prepared to measure the local stiffness by means of atomic force microscopy. The local stiffness of the different sites in acellular fibrotic lungs was very inhomogeneous within the lung and increased according to the degree of the structural fibrotic lesion. Local stiffness of the acellular lungs did not show statistically significant differences caused by age. The group of mice most affected by fibrosis exhibited local stiffness that were ~2-fold higher than in the control mice: from 27.2±1.64 to 64.8±7.1. kPa in the alveolar septa, from 56.6±4.6 to 99.9±11.7. kPa in the visceral pleura, from 41.1±8.0 to 105.2±13.6. kPa in the tunica adventitia, and from 79.3±7.2 to 146.6±28.8. kPa in the tunica intima. Since acellular lungs from mice with bleomycin-induced fibrosis present considerable micromechanical inhomogeneity, this model can be a useful tool to better investigate how different degrees of extracellular matrix lesion modulate cell fate in the process of organ bioengineering from decellularized lungs.

Keywords: Ageing, Atomic force microscopy, Decellularization, Lung fibrosis, Tissue engineering, Atomic force microscopy, Biological organs, Peptides, Sodium dodecyl sulfate, Sodium sulfate, Tissue engineering, Ageing, Decellularization, Extracellular matrices, Healthy controls, Inhomogeneities, Lung fibrosis, Micro-mechanical, Statistically significant difference, Mammals, bleomycin, adventitia, animal experiment, animal model, article, atomic force microscopy, bleomycin-induced pulmonary fibrosis, cell fate, controlled study, extracellular matrix, female, intima, lung alveolus, lung fibrosis, lung mechanics, mechanical probe, microenvironment, mouse, nonhuman, pleura, priority journal, rigidity, tissue engineering


Amigo, L. E., Fernandez, Q., Giralt, X., Casals, A., Amat, J., (2012). Study of patient-orthosis interaction forces in rehabilitation therapies IEEE Conference Publications 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob) , IEEE (Roma, Italy) , 1098-1103

The design of mechanical joints that kinematically behave as their biological counterparts is a challenge that if not addressed properly can cause inadequate forces transmission between robot and patient. This paper studies the interaction forces in rehabilitation therapies of the elbow joint. To measure the effect of orthosis-patient misalignments, a force sensor with a novel distributed architecture has been designed and used for this study. A test-bed based on an industrial robot acting as a virtual exoskeleton that emulates the action of a therapist has been developed and the interaction forces analyzed.

Keywords: Force, Force measurement, Force sensors, Joints, Medical treatment, Robot sensing systems, Force sensors, Medical robotics, Patient rehabilitation, Biological counterparts, Distributed architecture, Elbow joint, Force sensor, Inadequate forces transmission, Industrial robot, Mechanical joints design, Orthosis-patient misalignments, Patient-orthosis interaction forces, Rehabilitation therapies, Robot, Test-bed, Virtual exoskeleton


Madronal, Noelia, Lopez-Aracil, Cristina, Rangel, Alejandra, del Rio, Jose A., Delgado-Garcia, Jose M., Gruart, Agnes, (2010). Effects of Enriched Physical and Social Environments on Motor Performance, Associative Learning, and Hippocampal Neurogenesis in Mice PLoS ONE 5, (6), e11130

We have studied the motor abilities and associative learning capabilities of adult mice placed in different enriched environments. Three-month-old animals were maintained for a month alone (AL), alone in a physically enriched environment (PHY), and, finally, in groups in the absence (SO) or presence (SOPHY) of an enriched environment. The animals' capabilities were subsequently checked in the rotarod test, and for classical and instrumental learning. The PHY and SOPHY groups presented better performances in the rotarod test and in the acquisition of the instrumental learning task. In contrast, no significant differences between groups were observed for classical eyeblink conditioning. The four groups presented similar increases in the strength of field EPSPs (fEPSPs) evoked at the hippocampal CA3-CA1 synapse across classical conditioning sessions, with no significant differences between groups. These trained animals were pulse-injected with bromodeoxyuridine (BrdU) to determine hippocampal neurogenesis. No significant differences were found in the number of NeuN/BrdU double-labeled neurons. We repeated the same BrdU study in one-month-old mice raised for an additional month in the above-mentioned four different environments. These animals were not submitted to rotarod or conditioned tests. Non-trained PHY and SOPHY groups presented more neurogenesis than the other two groups. Thus, neurogenesis seems to be related to physical enrichment at early ages, but not to learning acquisition in adult mice.

Keywords: Long-term potentiation, Adult neurogenesis, Synaptic transmission, Cell proliferation, CA3-CA1 synapse, Granule cells


Correa, R., Laciar, E., Arini, P., Jané, R., (2010). Analysis of QRS loop in the Vectorcardiogram of patients with Chagas' disease Engineering in Medicine and Biology Society (EMBC) 32nd Annual International Conference of the IEEE , IEEE (Buenos Aires, Argentina) , 2561-2564

In the present work, we have studied the QRS loop in the Vectorcardiogram (VCG) of 95 chronic chagasic patients classified in different groups (I, II and III) according to their degree of myocardial damage. For comparison, the VCGs of 11 healthy subjects used as control group (Group O) were also examined. The QRS loop was obtained for each patient from the XYZ orthogonal leads of their High-Resolution Electrocardiogram (HRECG) records. In order to analyze the variations of QRS loop in each detected beat, it has been proposed in this study the following vectorcardiographic parameters a) Maximum magnitude of the cardiac depolarization vector, b) Volume, c) Area of QRS loop, d) Ratio between the Area and Perimeter, e) Ratio between the major and minor axes of the QRS loop and f) QRS loop Energy. It has been found that one or more indexes exhibited statistical differences (p<0.05) between groups 0-II, O-III, I-II, I-III and II-III. We concluded that the proposed method could be use as complementary diagnosis technique to evaluate the degree of myocardial damage in chronic chagasic patients.

Keywords: Practical, Experimental/ bioelectric phenomena, Diseases, Electrocardiography, Medical signal, Processing/ QRS loop, Vectorcardiogram, Cardiac depolarization vector, Myocardial damage, Chagas disease, Complementary diagnosis technique, High-resolution electrocardiogram


Comments are closed