by Keyword: NAM

By year:[ 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Hernández-Vega, Amayra, Marsal, María, Pouille, Philippe-Alexandre, Tosi, Sébastien, Colombelli, Julien, Luque, Tomás, Navajas, Daniel, Pagonabarraga, Ignacio, Martín-Blanco, Enrique, (2017). Polarized cortical tension drives zebrafish epiboly movements EMBO Journal 36, (1), 25-41

The principles underlying the biomechanics of morphogenesis are largely unknown. Epiboly is an essential embryonic event in which three tissues coordinate to direct the expansion of the blastoderm. How and where forces are generated during epiboly, and how these are globally coupled remains elusive. Here we developed a method, hydrodynamic regression (HR), to infer 3D pressure fields, mechanical power, and cortical surface tension profiles. HR is based on velocity measurements retrieved from 2D+T microscopy and their hydrodynamic modeling. We applied HR to identify biomechanically active structures and changes in cortex local tension during epiboly in zebrafish. Based on our results, we propose a novel physical description for epiboly, where tissue movements are directed by a polarized gradient of cortical tension. We found that this gradient relies on local contractile forces at the cortex, differences in elastic properties between cortex components and the passive transmission of forces within the yolk cell. All in all, our work identifies a novel way to physically regulate concerted cellular movements that might be instrumental for the mechanical control of many morphogenetic processes.

Keywords: Epiboly, Hydrodynamics, Mechanics, Morphogenesis, Zebrafish

Gómez-Santacana, Xavier, Dalton, James A. R., Rovira, Xavier, Pin, Jean Philippe, Goudet, Cyril, Gorostiza, Pau, Giraldo, Jesús, Llebaria, Amadeu, (2017). Positional isomers of bispyridine benzene derivatives induce efficacy changes on mGlu5 negative allosteric modulation European Journal of Medicinal Chemistry 127, 567-576

Modulation of metabotropic glutamate receptor 5 (mGlu5) with partial allosteric antagonists has received increased interest due to their favourable in vivo activity profiles compared to the unfavourable side-effects of full inverse agonists. Here we report on a series of bispyridine benzene derivatives with a functional molecular switch affecting antagonistic efficacy, shifting from inverse agonism to partial antagonism with only a single change in the substitution pattern of the benzene ring. These efficacy changes are explained through computational docking, revealing two different receptor conformations of different energetic stability and different positional isomer binding preferences.

Keywords: mGlu5, Isomers, Partial efficacy, NAM, Antagonist, Inverse agonist

Bianchi, M. V., Awaja, F., Altankov, G., (2017). Dynamic adhesive environment alters the differentiation potential of young and ageing mesenchymal stem cells Materials Science and Engineering C 78, 467-474

Engineering dynamic stem cell niche-like environment offers opportunity to obtain better control of the fate of stem cells. We identified, for the first time, that periodic changes in the adhesive environment of human adipose derived mesenchymal stem cells (ADSCs) alters dramatically their asymmetric division but not their ability for symmetric renewal. Hereby, we used smart thermo-responsive polymer (PNIPAM) to create a dynamic adhesive environment for ADSCs by applying periodic temperature cycles to perturb adsorbed adhesive proteins to substratum interaction. Cumulative population doubling time (CPDT) curves showed insignificant decline in the symmetric cell growth studied for up to 13th passages accompanied with small changes in the overall cell morphology and moderately declined fibronectin (FN) matrix deposition probably as a functional consequence of ADSCs ageing. However, a substantial alteration in the differentiation potential of ADSCs from both early and late passages (3rd and 14th, respectively) was found when the cells were switched to osteogenic differentiation conditions. This behavior was evidenced by the significantly altered alkaline phosphatase activity and Ca deposition (Alizarin red) assayed at 3, 14 and 21 day in comparison to the control samples of regular TC polystyrene processed under same temperature settings.

Keywords: Cell ageing, Dynamic adhesive environment, Extracellular matrix, Mesenchymal stem cells, PNIPAM, Stem cell niche, Symmetric and asymmetric cell growth, Thermo-cycling, Thermo-responsive polymer

Vila, M., García, A., Girotti, A., Alonso, M., Rodríguez-Cabello, J. C., González-Vázquez, A., Planell, J. A., Engel, E., Buján, J., Garcíaa-Honduvilla, N., Vallet-Regí, M., (2016). 3D silicon doped hydroxyapatite scaffolds decorated with Elastin-like Recombinamers for bone regenerative medicine Acta Biomaterialia 45, 349-356

The current study reports on the manufacturing by rapid prototyping technique of three-dimensional (3D) scaffolds based on silicon substituted hydroxyapatite with Elastin-like Recombinamers (ELRs) functionalized surfaces. Silicon doped hydroxyapatite (Si-HA), with Ca10(PO4)5.7(SiO4)0.3(OH)1.7h0.3 nominal formula, was surface functionalized with two different types of polymers designed by genetic engineering: ELR-RGD that contain cell attachment specific sequences and ELR-SNA15/RGD with both hydroxyapatite and cells domains that interact with the inorganic phase and with the cells, respectively. These hybrid materials were subjected to in vitro assays in order to clarify if the ELRs coating improved the well-known biocompatible and bone regeneration properties of calcium phosphates materials. The in vitro tests showed that there was a total and homogeneous colonization of the 3D scaffolds by Bone marrow Mesenchymal Stromal Cells (BMSCs). In addition, the BMSCs were viable and able to proliferate and differentiate into osteoblasts. Statement of Significance Bone tissue engineering is an area of increasing interest because its main applications are directly related to the rising life expectancy of the population, which promotes higher rates of several bone pathologies, so innovative strategies are needed for bone tissue regeneration therapies. Here we use the rapid prototyping technology to allow moulding ceramic 3D scaffolds and we use different bio-polymers for the functionalization of their surfaces in order to enhance the biological response. Combining the ceramic material (silicon doped hydroxyapatite, Si-HA) and the Elastin like Recombinamers (ELRs) polymers with the presence of the integrin-mediate adhesion domain alone or in combination with SNA15 peptide that possess high affinity for hydroxyapatite, provided an improved Bone marrow Mesenchymal Stromal Cells (BMSCs) differentiation into osteoblastic linkage.

Keywords: Bone marrow Mesenchymal Stromal Cells (BMSCs), Bone repair, Elastin-like Recombinamers (ELRs), Rapid prototyped 3D scaffolds, Silicon doped hydroxyapatite (Si-HA), Tissue engineering

A. R. Dalton, J., Lans, I., Rovira, X., Malhaire, F., Gómez-Santacana, X., Pittolo, S., Gorostiza, P., Llebaria, A., Goudet, C., Pin, J-P., Giraldo, J., (2016). Shining light on an mGlu5 photoswitchable NAM: A theoretical perspective Current Neuropharmacology 14, (5), 441-454

Metabotropic glutamate receptors (mGluRs) are important drug targets because of their involvement in several neurological diseases. Among mGluRs, mGlu5 is a particularly high-profile target because its positive or negative allosteric modulation can potentially treat schizophrenia or anxiety and chronic pain, respectively. Here, we computationally and experimentally probe the functional binding of a novel photoswitchable mGlu5 NAM, termed alloswitch-1, which loses its NAM functionality under violet light. We show alloswitch-1 binds deep in the allosteric pocket in a similar fashion to mavoglurant, the co-crystallized NAM in the mGlu5 transmembrane domain crystal structure. Alloswitch-1, like NAM 2-Methyl-6-(phenylethynyl)pyridine (MPEP), is significantly affected by P655M mutation deep in the allosteric pocket, eradicating its functionality. In MD simulations, we show alloswitch-1 and MPEP stabilize the co-crystallized water molecule located at the bottom of the allosteric site that is seemingly characteristic of the inactive receptor state. Furthermore, both NAMs form H-bonds with S809 on helix 7, which may constitute an important stabilizing interaction for NAM-induced mGlu5 inactivation. Alloswitch-1, through isomerization of its amide group from trans to cis is able to form an additional interaction with N747 on helix 5. This may be an important interaction for amide-containing mGlu5 NAMs, helping to stabilize their binding in a potentially unusual cis-amide state. Simulated conformational switching of alloswitch-1 in silico suggests photoisomerization of its azo group from trans to cis may be possible within the allosteric pocket. However, photoexcited alloswitch-1 binds in an unstable fashion, breaking H-bonds with the protein and destabilizing the co-crystallized water molecule. This suggests photoswitching may have destabilizing effects on mGlu5 binding and functionality.

Keywords: Allosteric modulation, Docking, Metabotropic glutamate receptor, Molecular dynamics, Mutation, Protein structure, Transmembrane domain

Van Der Hofstadt, M., Hüttener, M., Juárez, A., Gomila, G., (2015). Nanoscale imaging of the growth and division of bacterial cells on planar substrates with the atomic force microscope Ultramicroscopy 154, 29-36

Abstract With the use of the atomic force microscope (AFM), the Nanomicrobiology field has advanced drastically. Due to the complexity of imaging living bacterial processes in their natural growing environments, improvements have come to a standstill. Here we show the in situ nanoscale imaging of the growth and division of single bacterial cells on planar substrates with the atomic force microscope. To achieve this, we minimized the lateral shear forces responsible for the detachment of weakly adsorbed bacteria on planar substrates with the use of the so called dynamic jumping mode with very soft cantilever probes. With this approach, gentle imaging conditions can be maintained for long periods of time, enabling the continuous imaging of the bacterial cell growth and division, even on planar substrates. Present results offer the possibility to observe living processes of untrapped bacteria weakly attached to planar substrates.

Keywords: Atomic Force Microscope (AFM), Living cell imaging, Bacteria division, Gelatine immobilization, Dynamic jumping mode

Sheik, S., Marco, S., Huerta, R., Fonollosa, J., (2014). Continuous prediction in chemoresisitive gas sensors using reservoir computing Procedia Engineering 28th European Conference on Solid-State Transducers (EUROSENSORS 2014) , Eurosensors (Brescia, Italy) 87, 843-846

Although Metal Oxide (MOX) sensors are predominant choices to perform fundamental tasks of chemical detection, their use has been mainly limited to relatively controlled scenarios where a gas sensor array is first exposed to a reference, then to the gas sample, and finally to the reference again to recover the initial state. In this paper we propose the use of MOX sensors along with Reservoir Computing algorithms to identify chemicals of interest. Our approach allows continuous gas monitoring in simple experimental setups without the requirement of acquiring recovery transient of the sensors, thereby making the system specifically suitable for online monitoring applications.

Keywords: Chemical sensing, Reservoir computing, Gas sensors, Dynamic gas mixtures, Electronic nose

Vinagre, M., Aranda, J., Casals, A., (2014). An interactive robotic system for human assistance in domestic environments Computers Helping People with Special Needs (ed. Miesenberger, K., Fels, D., Archambault, D., Pe, Zagler), Springer International Publishing 8548, 152-155

This work introduces an interactive robotic system for assistance, conceived to tackle some of the challenges that domestic environments impose. The system is organized into a network of heterogeneous components that share both physical and logical functions to perform complex tasks. It consists of several robots for object manipulation, an advanced vision system that supplies in-formation about objects in the scene and human activity, and a spatial augmented reality interface that constitutes a comfortable means for interacting with the system. A first analysis based on users' experiences confirms the importance of having a friendly user interface. The inclusion of context awareness from visual perception enriches this interface allowing the robotic system to become a flexible and proactive assistant.

Keywords: Accessibility, Activity Recognition, Ambient Intelligence, Human-Robot Interaction, Robot Assistance, Augmented reality, Complex networks, Computer vision, User interfaces, Accessibility, Activity recognition, Ambient intelligence, Domestic environments, Heterogeneous component, Interactive robotics, Robot assistance, Spatial augmented realities, Human assistance, Robotics

Casals, Alicia, Fedele, Pasquale, Marek, Tadeusz, Molfino, Rezia, Muscolo, GiovanniGerardo, Recchiuto, CarmineTommaso, (2014). A robotic suit controlled by the human brain for people suffering from quadriplegia Lecture Notes in Computer Science Towards Autonomous Robotic Systems (ed. Natraj, Ashutosh, Cameron, Stephen, Melhuish, Chris, Witkowski, Mark), Springer Berlin Heidelberg , 294-295

The authors present an introductory work for the implementation of an international cooperative project aimed at designing, developing and validating a new generation of ergonomic robotic suits, wearable by the users and controlled by the human brain. The aim of the proposers is to allow the motion of people affected by paralysis or with reduced motor abilities. Therefore, the project will focus on the fusion between neuroergonomics and robotics, also by means of brain-machine interfaces. Breakthrough solutions will compose the advanced robotic suit, endowed with soft structures to increment safety and human comfort, and with an advanced real-time control that takes into account the interaction with the human body.

Keywords: Neuroergonomics, Brain computer interfaces, Robotics, Robotic suits, Compliant actuators, Exoskeleton, EEG, Dynamic balance control

Garde, Ainara, Voss, Andreas, Caminal, Pere, Benito, Salvador, Giraldo, Beatriz F., (2013). SVM-based feature selection to optimize sensitivity-specificity balance applied to weaning Computers in Biology and Medicine 43, (5), 533-540

Classification algorithms with unbalanced datasets tend to produce high predictive accuracy over the majority class, but poor predictive accuracy over the minority class. This problem is very common in biomedical data mining. This paper introduces a Support Vector Machine (SVM)-based optimized feature selection method, to select the most relevant features and maintain an accurate and well-balanced sensitivity–specificity result between unbalanced groups. A new metric called the balance index (B) is defined to implement this optimization. The balance index measures the difference between the misclassified data within each class. The proposed optimized feature selection is applied to the classification of patients' weaning trials from mechanical ventilation: patients with successful trials who were able to maintain spontaneous breathing after 48 h and patients who failed to maintain spontaneous breathing and were reconnected to mechanical ventilation after 30 min. Patients are characterized through cardiac and respiratory signals, applying joint symbolic dynamic (JSD) analysis to cardiac interbeat and breath durations. First, the most suitable parameters (C+,C−,

Keywords: Support vector machines, Balance index, Sensitivity-specificity balance, Cardiorespiratory interaction, Joint symbolic dynamics, Feature selection, Weaning procedure

Giraldo, B. F., Tellez, J. P., Herrera, S., Benito, S., (2013). Analysis of heart rate variability in elderly patients with chronic heart failure during periodic breathing CinC 2013 Computing in Cardiology Conference (CinC) , IEEE (Zaragoza, Spain) , 991-994

Assessment of the dynamic interactions between cardiovascular signals can provide valuable information that improves the understanding of cardiovascular control. Heart rate variability (HRV) analysis is known to provide information about the autonomic heart rate modulation mechanism. Using the HRV signal, we aimed to obtain parameters for classifying patients with and without chronic heart failure (CHF), and with periodic breathing (PB), non-periodic breathing (nPB), and Cheyne-Stokes respiration (CSR) patterns. An electrocardiogram (ECG) and a respiratory flow signal were recorded in 36 elderly patients: 18 patients with CHF and 18 patients without CHF. According to the clinical criteria, the patients were classified into the follow groups: 19 patients with nPB pattern, 7 with PB pattern, 4 with Cheyne-Stokes respiration (CSR), and 6 non-classified patients (problems with respiratory signal). From the HRV signal, parameters in the time and frequency domain were calculated. Frequency domain parameters were the most discriminant in comparisons of patients with and without CHF: PTot (p = 0.02), PLF (p = 0.022) and fpHF (p = 0.021). For the comparison of the nPB vs. CSR patients groups, the best parameters were RMSSD (p = 0.028) and SDSD (p = 0.028). Therefore, the parameters appear to be suitable for enhanced diagnosis of decompensated CHF patients and the possibility of developed periodic breathing and a CSR pattern.

Keywords: cardiovascular system, diseases, electrocardiography, frequency-domain analysis, geriatrics, medical signal processing, patient diagnosis, pneumodynamics, signal classification, Cheyne-Stokes respiration patterns, ECG, autonomic heart rate modulation mechanism, cardiovascular control, cardiovascular signals, chronic heart failure, decompensated CHF patients, dynamic interaction assessment, elderly patients, electrocardiogram, enhanced diagnosis, frequency domain parameters, heart rate variability analysis, patient classification, periodic breathing, respiratory flow signal recording, Electrocardiography, Frequency modulation, Frequency-domain analysis, Heart rate variability, Senior citizens, Standards

Giraldo, B. F., Chaparro, J. A., Caminal, P., Benito, S., (2013). Characterization of the respiratory pattern variability of patients with different pressure support levels Engineering in Medicine and Biology Society (EMBC) 35th Annual International Conference of the IEEE , IEEE (Osaka, Japan) , 3849-3852

One of the most challenging problems in intensive care is still the process of discontinuing mechanical ventilation, called weaning process. Both an unnecessary delay in the discontinuation process and a weaning trial that is undertaken too early are undesirable. In this study, we analyzed respiratory pattern variability using the respiratory volume signal of patients submitted to two different levels of pressure support ventilation (PSV), prior to withdrawal of the mechanical ventilation. In order to characterize the respiratory pattern, we analyzed the following time series: inspiratory time, expiratory time, breath duration, tidal volume, fractional inspiratory time, mean inspiratory flow and rapid shallow breathing. Several autoregressive modeling techniques were considered: autoregressive models (AR), autoregressive moving average models (ARMA), and autoregressive models with exogenous input (ARX). The following classification methods were used: logistic regression (LR), linear discriminant analysis (LDA) and support vector machines (SVM). 20 patients on weaning trials from mechanical ventilation were analyzed. The patients, submitted to two different levels of PSV, were classified as low PSV and high PSV. The variability of the respiratory patterns of these patients were analyzed. The most relevant parameters were extracted using the classifiers methods. The best results were obtained with the interquartile range and the final prediction errors of AR, ARMA and ARX models. An accuracy of 95% (93% sensitivity and 90% specificity) was obtained when the interquartile range of the expiratory time and the breath duration time series were used a LDA model. All classifiers showed a good compromise between sensitivity and specificity.

Keywords: autoregressive moving average processes, feature extraction, medical signal processing, patient care, pneumodynamics, signal classification, support vector machines, time series, ARX, autoregressive modeling techniques, autoregressive models with exogenous input, autoregressive moving average model, breath duration time series, classification method, classifier method, discontinuing mechanical ventilation, expiratory time, feature extraction, final prediction errors, fractional inspiratory time, intensive care, interquartile range, linear discriminant analysis, logistic regression analysis, mean inspiratory flow, patient respiratory volume signal, pressure support level, pressure support ventilation, rapid shallow breathing, respiratory pattern variability characterization, support vector machines, tidal volume, weaning trial, Analytical models, Autoregressive processes, Biological system modeling, Estimation, Support vector machines, Time series analysis, Ventilation

Hernando, D., Alcaine, A., Pueyo, E., Laguna, P., Orini, M., Arcentales, A., Giraldo, B., Voss, A., Bayes-Genis, A., Bailon, R., (2013). Influence of respiration in the very low frequency modulation of QRS slopes and heart rate variability in cardiomyopathy patients CinC 2013 Computing in Cardiology Conference (CinC) , IEEE (Zaragoza, Spain) , 117-120

This work investigates the very low frequency (VLF) modulation of QRS slopes and heart rate variability (HRV). Electrocardiogram (ECG) and respiratory flow signal were acquired from patients with dilated cardiomyopathy and ischemic cardiomyopathy. HRV as well as the upward QRS slope (IUS) and downward QRS slope (IDS) were extracted from the ECG. The relation between HRV and QRS slopes in the VLF band was measured using ordinary coherence in 5-minute segments. Partial coherence was then used to remove the influence that respiration simultaneously exerts on HRV and QRS slopes. A statistical threshold was determined, below which coherence values were considered not to represent a linear relation. 7 out of 276 segments belonging to 5 out of 29 patients for IUS and 10 segments belonging to 5 patients for IDS presented a VLF modulation in QRS slopes, HRV and respiration. In these segments spectral coherence was statistically significant, while partial coherence decreased, indicating that the coupling HRV and QRS slopes was related to respiration. 4 segments had a partial coherence value below the threshold for IUS, 3 segments for IDS. The rest of the segments also presented a notable decrease in partial coherence, but still above the threshold, which means that other non-linearly effects may also affect this modulation.

Keywords: diseases, electrocardiography, feature extraction, medical signal processing, pneumodynamics, statistical analysis, ECG, QRS slopes, cardiomyopathy patients, dilated cardiomyopathy, electrocardiogram, feature extraction, heart rate variability, ischemic cardiomyopathy, ordinary coherence, partial coherence value, respiration, respiratory flow signal acquisition, spectral coherence, statistical threshold, time 5 min, very low frequency modulation, Coherence, Educational institutions, Electrocardiography, Frequency modulation, Heart rate variability

Gonzalez, H., Acevedo, H., Arizmendi, C., Giraldo, B. F., (2013). Methodology for determine the moment of disconnection of patients of the mechanical ventilation using discrete wavelet transform Complex Medical Engineering (CME) 2013 ICME International Conference , IEEE (Beijing, China) , 483-486

The process of weaning from mechanical ventilation is one of the challenges in intensive care units. 66 patients under extubation process (T-tube test) were studied: 33 patients with successful trials and 33 patients who failed to maintain spontaneous breathing and were reconnected. Each patient was characterized using 7 time series from respiratory signals, and for each serie was evaluated the discrete wavelet transform. It trains a neural network for discriminating between patients from the two groups.

Keywords: discrete wavelet transforms, neural nets, patient treatment, pneumodynamics, time series, ventilation, T-tube test, discrete wavelet transform, extubation process, intensive care units, mechanical ventilation, moment of disconnection, neural network, patients, respiratory signals, spontaneous breathing, time series, weaning, Mechanical Ventilation, Neural Networks, Time series from respiratory signals, Wavelet Transform

Jané, R., Lazaro, J., Ruiz, P., Gil, E., Navajas, D., Farre, R., Laguna, P., (2013). Obstructive Sleep Apnea in a rat model: Effects of anesthesia on autonomic evaluation from heart rate variability measures CinC 2013 Computing in Cardiology Conference (CinC) , IEEE (Zaragoza, Spain) , 1011-1014

Rat model of Obstructive Sleep Apnea (OSA) is a realistic approach for studying physiological mechanisms involved in sleep. Rats are usually anesthetized and autonomic nervous system (ANS) could be blocked. This study aimed to assess the effect of anesthesia on ANS activity during OSA episodes. Seven male Sprague-Dawley rats were anesthetized intraperitoneally with urethane (1g/kg). The experiments were conducted applying airway obstructions, simulating 15s-apnea episodes for 15 minutes. Five signals were acquired: respiratory pressure and flow, SaO2, ECG and photoplethysmography (PPG). In total, 210 apnea episodes were studied. Normalized power spectrum of Pulse Rate Variability (PRV) was analyzed in the Low Frequency (LF) and High Frequency (HF) bands, for each episode in consecutive 15s intervals (before, during and after the apnea). All episodes showed changes in respiratory flow and SaO2 signal. Conversely, decreases in the amplitude fluctuations of PPG (DAP) were not observed. Normalized LF presented extremely low values during breathing (median=7,67%), suggesting inhibition of sympathetic system due to anesthetic effect. Subtle increases of LF were observed during apnea. HRV and PPG analysis during apnea could be an indirect tool to assess the effect and deep of anesthesia.

Keywords: electrocardiography, fluctuations, medical disorders, medical signal detection, medical signal processing, neurophysiology, photoplethysmography, pneumodynamics, sleep, ECG, SaO2 flow, SaO2 signal, airway obstructions, amplitude fluctuations, anesthesia effects, anesthetized nervous system, autonomic evaluation, autonomic nervous system, breathing, heart rate variability, high-frequency bands, low-frequency bands, male Sprague-Dawley rats, normalized power spectrum, obstructive sleep apnea, photoplethysmography, physiological mechanisms, pulse rate variability, rat model, respiratory flow, respiratory pressure, signal acquisition, sympathetic system inhibition, time 15 min, time 15 s, Abstracts, Atmospheric modeling, Computational modeling, Electrocardiography, Rats, Resonant frequency

Giraldo, B. F., Tellez, J. P., Herrera, S., Benito, S., (2013). Study of the oscillatory breathing pattern in elderly patients Engineering in Medicine and Biology Society (EMBC) 35th Annual International Conference of the IEEE , IEEE (Osaka, Japan) , 5228-5231

Some of the most common clinical problems in elderly patients are related to diseases of the cardiac and respiratory systems. Elderly patients often have altered breathing patterns, such as periodic breathing (PB) and Cheyne-Stokes respiration (CSR), which may coincide with chronic heart failure. In this study, we used the envelope of the respiratory flow signal to characterize respiratory patterns in elderly patients. To study different breathing patterns in the same patient, the signals were segmented into windows of 5 min. In oscillatory breathing patterns, frequency and time-frequency parameters that characterize the discriminant band were evaluated to identify periodic and non-periodic breathing (PB and nPB). In order to evaluate the accuracy of this characterization, we used a feature selection process, followed by linear discriminant analysis. 22 elderly patients (7 patients with PB and 15 with nPB pattern) were studied. The following classification problems were analyzed: patients with either PB (with and without apnea) or nPB patterns, and patients with CSR versus PB, CSR versus nPB and PB versus nPB patterns. The results showed 81.8% accuracy in the comparisons of nPB and PB patients, using the power of the modulation peak. For the segmented signal, the power of the modulation peak, the frequency variability and the interquartile ranges provided the best results with 84.8% accuracy, for classifying nPB and PB patients.

Keywords: cardiovascular system, diseases, feature extraction, geriatrics, medical signal processing, oscillations, pneumodynamics, signal classification, time-frequency analysis, Cheyne-Stokes respiration, apnea, cardiac systems, chronic heart failure, classification problems, discriminant band, diseases, elderly patients, feature selection process, frequency variability, interquartile ranges, linear discriminant analysis, nonperiodic breathing, oscillatory breathing pattern, periodic breathing, respiratory How signal, respiratory systems, signal segmentation, time 5 min, time-frequency parameters, Accuracy, Aging, Frequency modulation, Heart, Senior citizens, Time-frequency analysis

Arimon, M., Sanz, F., Giralt, E., Carulla, N., (2012). Template-assisted lateral growth of amyloid- Bioconjugate Chemistry 23, (1), 27-32

Valle-Delgado, J. J., Liepina, I., Lapidus, D., Sabaté, R., Ventura, S., Samitier, J., Fernàndez-Busquets, X., (2012). Self-assembly of human amylin-derived peptides studied by atomic force microscopy and single molecule force spectroscopy Soft Matter 8, (4), 1234-1242

The self-assembly of peptides and proteins into amyloid fibrils of nanometric thickness and up to several micrometres in length, a phenomenon widely observed in biological systems, has recently aroused a growing interest in nanotechnology and nanomedicine. Here we have applied atomic force microscopy and single molecule force spectroscopy to study the amyloidogenesis of a peptide derived from human amylin and of its reverse sequence. The spontaneous formation of protofibrils and their orientation along well-defined directions on graphite and DMSO-coated graphite substrates make the studied peptides interesting candidates for nanotechnological applications. The measured binding forces between peptides correlate with the number of hydrogen bonds between individual peptides inside the fibril structure according to molecular dynamics simulations.

Keywords: Amyloid fibril, Amyloidogenesis, Binding forces, Fibril structure, Graphite substrate, Molecular dynamics simulations, Nanometrics, Protofibrils, Single molecule force spectroscopy, Spontaneous formation, Atomic force microscopy, Atomic spectroscopy, Graphite, Hydrogen bonds, Medical nanotechnology, Molecular dynamics, Molecular physics, Self assembly, Thickness measurement, Peptides

Redondo-Morata, Lorena, Oncins, Gerard, Sanz, Fausto, (2012). Force spectroscopy reveals the effect of different ions in the nanomechanical behavior of phospholipid model membranes: The case of potassium cation Biophysical Journal 102, (1), 66-74

How do metal cations affect the stability and structure of phospholipid bilayers? What role does ion binding play in the insertion of proteins and the overall mechanical stability of biological membranes? Investigators have used different theoretical and microscopic approaches to study the mechanical properties of lipid bilayers. Although they are crucial for such studies, molecular-dynamics simulations cannot yet span the complexity of biological membranes. In addition, there are still some experimental difficulties when it comes to testing the ion binding to lipid bilayers in an accurate way. Hence, there is a need to establish a new approach from the perspective of the nanometric scale, where most of the specific molecular phenomena take place. Atomic force microscopy has become an essential tool for examining the structure and behavior of lipid bilayers. In this work, we used force spectroscopy to quantitatively characterize nanomechanical resistance as a function of the electrolyte composition by means of a reliable molecular fingerprint that reveals itself as a repetitive jump in the approaching force curve. By systematically probing a set of bilayers of different composition immersed in electrolytes composed of a variety of monovalent and divalent metal cations, we were able to obtain a wealth of information showing that each ion makes an independent and important contribution to the gross mechanical resistance and its plastic properties. This work addresses the need to assess the effects of different ions on the structure of phospholipid membranes, and opens new avenues for characterizing the (nano)mechanical stability of membranes.

Keywords: Molecular-dynamics simulation, Liquid expanded monolayers, Lipid-bilayers, Hofmeister series, Monovalent salt, Phosphatidylcholine, Microscopy, Binding, Surfaces, NaCl

Giraldo, B.F., Gaspar, B.W., Caminal, P., Benito, S., (2012). Analysis of roots in ARMA model for the classification of patients on weaning trials Engineering in Medicine and Biology Society (EMBC) 34th Annual International Conference of the IEEE , IEEE (San Diego, USA) , 698-701

One objective of mechanical ventilation is the recovery of spontaneous breathing as soon as possible. Remove the mechanical ventilation is sometimes more difficult that maintain it. This paper proposes the study of respiratory flow signal of patients on weaning trials process by autoregressive moving average model (ARMA), through the location of poles and zeros of the model. A total of 151 patients under extubation process (T-tube test) were analyzed: 91 patients with successful weaning (GS), 39 patients that failed to maintain spontaneous breathing and were reconnected (GF), and 21 patients extubated after the test but before 48 hours were reintubated (GR). The optimal model was obtained with order 8, and statistical significant differences were obtained considering the values of angles of the first four poles and the first zero. The best classification was obtained between GF and GR, with an accuracy of 75.3% on the mean value of the angle of the first pole.

Keywords: Analytical models, Biological system modeling, Computational modeling, Estimation, Hospitals, Poles and zeros, Ventilation, Autoregressive moving average processes, Patient care, Patient monitoring, Pneumodynamics, Poles and zeros, Ventilation, ARMA model, T-tube test, Autoregressive moving average model, Extubation process, Mechanical ventilation, Optimal model, Patient classification, Respiratory flow signal, Roots, Spontaneous breathing, Weaning trials

Chaparro, J.A., Giraldo, B.F., Caminal, P., Benito, S., (2012). Performance of respiratory pattern parameters in classifiers for predict weaning process Engineering in Medicine and Biology Society (EMBC) 34th Annual International Conference of the IEEE , IEEE (San Diego, USA) , 4349-4352

Weaning trials process of patients in intensive care units is a complex clinical procedure. 153 patients under extubation process (T-tube test) were studied: 94 patients with successful trials (group S), 38 patients who failed to maintain spontaneous breathing and were reconnected (group F), and 21 patients with successful test but that had to be reintubated before 48 hours (group R). The respiratory pattern of each patient was characterized through the following time series: inspiratory time (TI), expiratory time (TE), breathing cycle duration (TTot), tidal volume (VT), inspiratory fraction (TI/TTot), half inspired flow (VT/TI), and rapid shallow index (f/VT), where f is respiratory rate. Using techniques as autoregressive models (AR), autoregressive moving average models (ARMA) and autoregressive models with exogenous input (ARX), the most relevant parameters of the respiratory pattern were obtained. We proposed the evaluation of these parameters using classifiers as logistic regression (LR), linear discriminant analysis (LDA), support vector machines (SVM) and classification and regression tree (CART) to discriminate between patients from groups S, F and R. An accuracy of 93% (98% sensitivity and 82% specificity) has been obtained using CART classification.

Keywords: Accuracy, Indexes, Logistics, Regression tree analysis, Support vector machines, Time series analysis, Autoregressive moving average processes, Medical signal processing, Pattern classification, Pneumodynamics, Regression analysis, Sensitivity, Signal classification, Support vector machines, Time series, SVM, T-tube testing, Autoregressive models-with-exogenous input, Autoregressive moving average models, Breathing cycle duration, Classification-and-regression tree, Expiratory time, Extubation process, Half inspired flow, Inspiratory fraction, Inspiratory time, Intensive care units, Linear discriminant analysis, Logistic regression, Rapid shallow index, Respiratory pattern parameter performance, Sensitivity, Spontaneous breathing, Support vector machines, Tidal volume, Time 48 hr, Time series, Weaning process classifiers

Garde, A., Giraldo, B.F., Jané, R., Latshang, T.D., Turk, A.J., Hess, T., Bosch, M-.M., Barthelmes, D., Hefti, J.P., Maggiorini, M., Hefti, U., Merz, T.M., Schoch, O.D., Bloch, K.E., (2012). Periodic breathing during ascent to extreme altitude quantified by spectral analysis of the respiratory volume signal Engineering in Medicine and Biology Society (EMBC) 34th Annual International Conference of the IEEE , IEEE (San Diego, USA) , 707-710

High altitude periodic breathing (PB) shares some common pathophysiologic aspects with sleep apnea, Cheyne-Stokes respiration and PB in heart failure patients. Methods that allow quantifying instabilities of respiratory control provide valuable insights in physiologic mechanisms and help to identify therapeutic targets. Under the hypothesis that high altitude PB appears even during physical activity and can be identified in comparison to visual analysis in conditions of low SNR, this study aims to identify PB by characterizing the respiratory pattern through the respiratory volume signal. A number of spectral parameters are extracted from the power spectral density (PSD) of the volume signal, derived from respiratory inductive plethysmography and evaluated through a linear discriminant analysis. A dataset of 34 healthy mountaineers ascending to Mt. Muztagh Ata, China (7,546 m) visually labeled as PB and non periodic breathing (nPB) is analyzed. All climbing periods within all the ascents are considered (total climbing periods: 371 nPB and 40 PB). The best crossvalidated result classifying PB and nPB is obtained with Pm (power of the modulation frequency band) and R (ratio between modulation and respiration power) with an accuracy of 80.3% and area under the receiver operating characteristic curve of 84.5%. Comparing the subjects from 1st and 2nd ascents (at the same altitudes but the latter more acclimatized) the effect of acclimatization is evaluated. SaO2 and periodic breathing cycles significantly increased with acclimatization (p-value <; 0.05). Higher Pm and higher respiratory frequencies are observed at lower SaO2, through a significant negative correlation (p-value <; 0.01). Higher Pm is observed at climbing periods visually labeled as PB with >; 5 periodic breathing cycles through a significant positive correlation (p-value <; 0.01). Our data demonstrate that quantification of the respiratory volum- signal using spectral analysis is suitable to identify effects of hypobaric hypoxia on control of breathing.

Keywords: Frequency domain analysis, Frequency modulation, Heart, Sleep apnea, Ventilation, Visualization, Cardiology, Medical disorders, Medical signal processing, Plethysmography, Pneumodynamics, Sensitivity analysis, Sleep, Spectral analysis, Cheyne-Stokes respiration, Climbing periods, Dataset, Heart failure patients, High altitude PB, High altitude periodic breathing, Hypobaric hypoxia, Linear discriminant analysis, Pathophysiologic aspects, Physical activity, Physiologic mechanisms, Power spectral density, Receiver operating characteristic curve, Respiratory control, Respiratory frequency, Respiratory inductive plethysmography, Respiratory pattern, Respiratory volume signal, Sleep apnea, Spectral analysis, Spectral parameters

Mesquita, J., Poree, F., Carrault, G., Fiz, J. A., Abad, J., Jané, R., (2012). Respiratory and spontaneous arousals in patients with Sleep Apnea Hypopnea Syndrome Engineering in Medicine and Biology Society (EMBC) 34th Annual International Conference of the IEEE , IEEE (San Diego, USA) , 6337-6340

Sleep in patients with Sleep Apnea-Hypopnea Syndrome (SAHS) is frequently interrupted with arousals. Increased amounts of arousals result in shortening total sleep time and repeated sleep-arousal change can result in sleep fragmentation. According to the American Sleep Disorders Association (ASDA) an arousal is a marker of sleep disruption representing a detrimental and harmful feature for sleep. The nature of arousals and its role on the regulation of the sleep process raises controversy and has sparked the debate in the last years. In this work, we analyzed and compared the EEG spectral content of respiratory and spontaneous arousals on a database of 45 SAHS subjects. A total of 3980 arousals (1996 respiratory and 1984 spontaneous) were analyzed. The results showed no differences between the spectral content of the two kinds of arousals. Our findings raise doubt as to whether these two kinds of arousals are truly triggered by different organic mechanisms. Furthermore, they may also challenge the current beliefs regarding the underestimation of the importance of spontaneous arousals and their contribution to sleep fragmentation in patients suffering from SAHS.

Keywords: Adaptive filters, Correlation, Databases, Electroencephalography, Hospitals, Sleep apnea, Electroencephalography, Medical signal processing, Pneumodynamics, Sleep, EEG spectral content, Organic mechanism, Respiratory, Sleep apnea hypopnea syndrome, Sleep fragmentation, Spectral content, Spontaneous arousal

Angelini, Thomas E., Hannezo, Edouard, Trepat, Xavier, Marquez, Manuel, Fredberg, Jeffrey J., Weitz, David A., (2011). Glass-like dynamics of collective cell migration Proceedings of the National Academy of Sciences 108, (12), 4714-4719

Collective cell migration in tissues occurs throughout embryonic development, during wound healing, and in cancerous tumor invasion, yet most detailed knowledge of cell migration comes from single-cell studies. As single cells migrate, the shape of the cell body fluctuates dramatically through cyclic processes of extension, adhesion, and retraction, accompanied by erratic changes in migration direction. Within confluent cell layers, such subcellular motions must be coupled between neighbors, yet the influence of these subcellular motions on collective migration is not known. Here we study motion within a confluent epithelial cell sheet, simultaneously measuring collective migration and subcellular motions, covering a broad range of length scales, time scales, and cell densities. At large length scales and time scales collective migration slows as cell density rises, yet the fastest cells move in large, multicell groups whose scale grows with increasing cell density. This behavior has an intriguing analogy to dynamic heterogeneities found in particulate systems as they become more crowded and approach a glass transition. In addition we find a diminishing self-diffusivity of short-wavelength motions within the cell layer, and growing peaks in the vibrational density of states associated with cooperative cell-shape fluctuations. Both of these observations are also intriguingly reminiscent of a glass transition. Thus, these results provide a broad and suggestive analogy between cell motion within a confluent layer and the dynamics of supercooled colloidal and molecular fluids approaching a glass transition.

Keywords: Active matter, Cell mechanics, Jamming, Collective cell dynamics, Nonequilibrium

Melchels, Ferry P. W., Tonnarelli, Beatrice, Olivares, Andy L., Martin, Ivan, Lacroix, Damien, Feijen, Jan, Wendt, David J., Grijpma, Dirk W., (2011). The influence of the scaffold design on the distribution of adhering cells after perfusion cell seeding Biomaterials 32, (11), 2878-2884

In natural tissues, the extracellular matrix composition, cell density and physiological properties are often non-homogeneous. Here we describe a model system, in which the distribution of cells throughout tissue engineering scaffolds after perfusion seeding can be influenced by the pore architecture of the scaffold. Two scaffold types, both with gyroid pore architectures, were designed and built by stereolithography: one with isotropic pore size (412 ± 13 [mu]m) and porosity (62 ± 1%), and another with a gradient in pore size (250-500 [mu]m) and porosity (35%-85%). Computational fluid flow modelling showed a uniform distribution of flow velocities and wall shear rates (15-24 s-1) for the isotropic architecture, and a gradient in the distribution of flow velocities and wall shear rates (12-38 s-1) for the other architecture. The distribution of cells throughout perfusion-seeded scaffolds was visualised by confocal microscopy. The highest densities of cells correlated with regions of the scaffolds where the pores were larger, and the fluid velocities and wall shear rates were the highest. Under the applied perfusion conditions, cell deposition is mainly determined by local wall shear stress, which, in turn, is strongly influenced by the architecture of the pore network of the scaffold.

Keywords: Scaffolds, Microstructure, Cell adhesion, Confocal microscopy, Image analysis, Computational fluid dynamics

Llorens, Franc, Hummel, Manuela, Pastor, Xavier, Ferrer, Anna, Pluvinet, Raquel, Vivancos, Ana, Castillo, Ester, Iraola, Susana, Mosquera, Ana M., Gonzalez, Eva, Lozano, Juanjo, Ingham, Matthew, Dohm, Juliane C., Noguera, Marc, Kofler, Robert, Antonio del Rio, Jose, Bayes, Monica, Himmelbauer, Heinz, Sumoy, Lauro, (2011). Multiple platform assessment of the EGF dependent transcriptome by microarray and deep tag sequencing analysis BMC Genomics 12, 326

Background: Epidermal Growth Factor (EGF) is a key regulatory growth factor activating many processes relevant to normal development and disease, affecting cell proliferation and survival. Here we use a combined approach to study the EGF dependent transcriptome of HeLa cells by using multiple long oligonucleotide based microarray platforms (from Agilent, Operon, and Illumina) in combination with digital gene expression profiling (DGE) with the Illumina Genome Analyzer. Results: By applying a procedure for cross-platform data meta-analysis based on RankProd and GlobalAncova tests, we establish a well validated gene set with transcript levels altered after EGF treatment. We use this robust gene list to build higher order networks of gene interaction by interconnecting associated networks, supporting and extending the important role of the EGF signaling pathway in cancer. In addition, we find an entirely new set of genes previously unrelated to the currently accepted EGF associated cellular functions. Conclusions: We propose that the use of global genomic cross-validation derived from high content technologies (microarrays or deep sequencing) can be used to generate more reliable datasets. This approach should help to improve the confidence of downstream in silico functional inference analyses based on high content data.

Keywords: Gene-expression measurements, Quality-control maqc, Cancer-cell-lines, Real-time pcr, Oligonucleotide microarrays, Phosphorylation dynamics, In-vivo, Networks, Signal, Technologies

Cagido, Viviane Ramos, Zin, Walter Araujo, Ramirez, Jose, Navajas, Daniel, Farre, Ramon, (2011). Alternating ventilation in a rat model of increased abdominal pressure Respiratory Physiology & Neurobiology 175, (3), 310-315

During alternating ventilation (AV) one lung is inflating while the other is deflating. Considering the possible respiratory and hemodynamic advantages of AV, we investigated its effects during increased intra-abdominal pressure (IAP = 10 mmHg). In Sprague-Dawley rats (n = 6, 270–375 g) the main bronchi were independently cannulated, and respiratory mechanics determined while animals underwent different ventilatory patterns: synchronic ventilation without increased IAP (SV-0), elevated IAP during SV (SV-10), and AV with elevated IAP (AV-10). Thirty-three other animals (SV-0, n = 10; SV-10, n = 11 and AV-10, n = 12) were ventilated during 3 h. Mean arterial pressure (MAP), and lung histology were assessed. Increased IAP resulted in significantly higher elastances (p < 0.001), being AV-10 lower than SV-10 (p < 0.020). SV-10 showed higher central venous pressure (p < 0.003) than S-0; no change was observed in AV-10. Wet/dry lung weight ratio was lower in AV-10 than SV-10 (p = 0.009). Application of AV reduced hemodynamic and lung impairments induced by increased IAP during SV.

Keywords: Alternating ventilation, Respiratory mechanics, Intra-abdominal pressure, Hemodynamic, Mechanical ventilation, Animal model

Garcia-Manyes, S., Redondo-Morata, L., Oncins, G., Sanz, F., (2010). Nanomechanics of lipid bilayers: Heads or tails? Journal of the American Chemical Society American Chemical Society 132, (37), 12874-12886

Understanding the effect of mechanical stress on membranes is of primary importance in biophysics. Here we use force spectroscopy AFM to quantitatively characterize the nanomechanical stability of supported lipid bilayers as a function of their chemical composition. The onset of plastic deformation reveals itself as a repetitive jump in the approaching force curve, which represents a molecular fingerprint for the bilayer mechanical stability. By systematically probing a set of chemically distinct supported lipid bilayers (SLBs), we first show that both the headgroup and tail have a decisive effect on their mechanical properties. While the mechanical stability of the probed SLBs linearly increases by 3.3 nN upon the introduction of each additional -CH2- in the chain, it exhibits a significant dependence on the phospholipid headgroup, ranging from 3 nN for DPPA to 66 nN for DPPG. Furthermore, we also quantify the reduction of the membrane mechanical stability as a function of the number of unsaturations and molecular branching in the chemical structure of the apolar tails. Finally, we demonstrate that, upon introduction of cholesterol and ergosterol, contrary to previous belief the mechanical stability of membranes not only increases linearly in the liquid phase (DLPC) but also for phospholipids present in the gel phase (DPPC). Our results are discussed in the framework of the continuum nucleation model. This work highlights the compelling effect of subtle variations in the chemical structure of phospholipid molecules on the membrane response when exposed to mechanical forces, a mechanism of common occurrence in nature.

Keywords: Atomic-force microscopy, Molecular-dynamics simulation, Aqueous-electrolyte solutions, Supported planar membranes, Phospholipid-bilayers, Biological-membranes, Physical-properties, Fluid membranes, Model membranes, Chain-length

Santoro, R., Olivares, A. L., Brans, G., Wirz, D., Longinotti, C., Lacroix, D., Martin, I., Wendt, D., (2010). Bioreactor based engineering of large-scale human cartilage grafts for joint resurfacing Biomaterials 31, (34), 8946-8952

Apart from partial or total joint replacement, no surgical procedure is currently available to treat large and deep cartilage defects associated with advanced diseases such as osteoarthritis. In this work, we developed a perfusion bioreactor system to engineer human cartilage grafts in a size with clinical relevance for unicompartmental resurfacing of human knee joints (50 mm diameter x 3 mm thick). Computational fluid dynamics models were developed to optimize the flow profile when designing the perfusion chamber. Using the developed system, human chondrocytes could be seeded throughout large 50 mm diameter scaffolds with a uniform distribution. Following two weeks culture, tissues grown in the bioreactor were viable and homogeneously cartilaginous, with biomechanical properties approaching those of native cartilage. In contrast, tissues generated by conventional manual production procedures were highly inhomogeneous and contained large necrotic regions. The unprecedented engineering of human cartilage tissues in this large-scale opens the practical perspective of grafting functional biological substitutes for the clinical treatment for extensive cartilage defects, possibly in combination with surgical or pharmacological therapies to support durability of the implant. Ongoing efforts are aimed at integrating the up-scaled bioreactor based processes within a fully automated and closed manufacturing system for safe, standardized, and GMP compliant production of large-scale cartilage grafts.

Keywords: Bioreactor, Cartilage repair, Computational fluid dynamics, Scale-up, Regenerative medicine, Tissue engineering

Estevez, M., Fernandez-Ulibarri, I., Martinez, E., Egea, G., Samitier, J., (2010). Changes in the internal organization of the cell by microstructured substrates Soft Matter 6, (3), 582-590

Surface features at the micro and nanometre scale have been shown to influence and even determine cell behaviour and cytoskeleton organization through direct mechanotransductive pathways. Much less is known about the function and internal distribution of organelles of cells grown on topographically modified surfaces. In this study, the nanoimprint lithography technique was used to manufacture poly(methyl methacrylate) (PMMA) sheets with a variety of features in the micrometre size range. Normal rat kidney (NRK) fibroblasts were cultured on these substrates and immunofluorescence staining assays were performed to visualize cell adhesion, the organization of the cytoskeleton and the morphology and subcellular positioning of the Golgi complex. The results show that different topographic features at the micrometric scale induce different rearrangements of the cell cytoskeleton, which in turn alter the positioning and morphology of the Golgi complex. Microposts and microholes alter the mechanical stability of the Golgi complex by modifying the actin cytoskeleton organization leading to the compaction of the organelle. These findings prove that physically modified surfaces are a valuable tool with which to study the dynamics of cell cytoskeleton organization and its subsequent repercussion on internal cell organization and associated function.

Keywords: Actin stress fibers, Golgi-complex, Focal adhesions, Cytoskeletal organization, Osteoblast adhesion, Mammalian-cells, Micron-scale, Nanoscale, Dynamics, Rho

Harder, A., Walhorn, V., Dierks, T., Fernàndez-Busquets, X., Anselmetti, D., (2010). Single-molecule force spectroscopy of cartilage aggrecan self-adhesion Biophysical Journal 99, (10), 3498-3504

We investigated self-adhesion between highly negatively charged aggrecan macromolecules extracted from bovine cartilage extracellular matrix by performing atomic force microscopy (AFM) imaging and single-molecule force spectroscopy (SMFS) in saline solutions. By controlling the density of aggrecan molecules on both the gold substrate and the gold-coated tip surface at submonolayer densities, we were able to detect and quantify the Ca2+-dependent homodimeric interaction between individual aggrecan molecules at the single-molecule level. We found a typical nonlinear sawtooth profile in the AFM force-versus-distance curves with a molecular persistence length of I-p = 0.31 +/- 0.04 nm. This is attributed to the stepwise dissociation of individual glycosaminoglycan (GAG) side chains in aggrecans, which is very similar to the known force fingerprints of other cell adhesion proteoglycan systems. After studying the GAG-GAG dissociation in a dynamic, loading-rate-dependent manner (dynamic SMFS) and analyzing the data according to the stochastic Bell-Evans model for a thermally activated decay of a metastable state under an external force, we estimated for the single glycan interaction a mean lifetime of tau = 7.9 +/- 4.9 s and a reaction bond length of x(beta) = 0.31 +/- 0.08 nm. Whereas the x(beta)-value compares well with values from other cell adhesion carbohydrate recognition motifs in evolutionary distant marine sponge proteoglycans, the rather short GAG interaction lifetime reflects high intermolecular dynamics within aggrecan complexes, which may be relevant for the viscoelastic properties of cartilage tissue.

Keywords: Bovine nasal cartilage, Articular-cartilage, Sinorhizobium-meliloti, Proteoglycan, Microscopy, DNA, Macromolecules, Binding, Protein, Glycosaminoglycans

Caminal, P., Giraldo, B. F., Vallverdu, M., Benito, S., Schroeder, R., Voss, A., (2010). Symbolic dynamic analysis of relations between cardiac and breathing cycles in patients on weaning trials Annals of Biomedical Engineering 38, (8), 2542-52

Traditional time-domain techniques of data analysis are often not sufficient to characterize the complex dynamics of the cardiorespiratory interdependencies during the weaning trials. In this paper, the interactions between the heart rate (HR) and the breathing rate (BR) were studied using joint symbolic dynamic analysis. A total of 133 patients on weaning trials from mechanical ventilation were analyzed: 94 patients with successful weaning (group S) and 39 patients that failed to maintain spontaneous breathing (group F). The word distribution matrix enabled a coarse-grained quantitative assessment of short-term nonlinear analysis of the cardiorespiratory interactions. The histogram of the occurrence probability of the cardiorespiratory words presented a higher homogeneity in group F than in group S, measured with a higher number of forbidden words in group S as well as a higher number of words whose probability of occurrence is higher than a probability threshold in group S. The discriminant analysis revealed the best results when applying symbolic dynamic variables. Therefore, we hypothesize that joint symbolic dynamic analysis provides enhanced information about different interactions between HR and BR, when comparing patients with successful weaning and patients that failed to maintain spontaneous breathing in the weaning procedure.

Keywords: Dynamical nonlinearities analysis, Cardiorespiratory interdependencies, Joint symbolic dynamic, Weaning procedure

Garde, A., Schroeder, R., Voss, A., Caminal, P., Benito, S., Giraldo, B., (2010). Patients on weaning trials classified with support vector machines Physiological Measurement 31, (7), 979-993

The process of discontinuing mechanical ventilation is called weaning and is one of the most challenging problems in intensive care. An unnecessary delay in the discontinuation process and an early weaning trial are undesirable. This study aims to characterize the respiratory pattern through features that permit the identification of patients' conditions in weaning trials. Three groups of patients have been considered: 94 patients with successful weaning trials, who could maintain spontaneous breathing after 48 h ( GSucc ); 39 patients who failed the weaning trial ( GFail ) and 21 patients who had successful weaning trials, but required reintubation in less than 48 h ( GRein ). Patients are characterized by their cardiorespiratory interactions, which are described by joint symbolic dynamics (JSD) applied to the cardiac interbeat and breath durations. The most discriminating features in the classification of the different groups of patients ( GSucc , GFail and GRein ) are identified by support vector machines (SVMs). The SVM-based feature selection algorithm has an accuracy of 81% in classifying GSucc versus the rest of the patients, 83% in classifying GRein versus GSucc patients and 81% in classifying GRein versus the rest of the patients. Moreover, a good balance between sensitivity and specificity is achieved in all classifications.

Keywords: Mechanical ventilation, Weaning, Support vector machines, Joint symbolic dynamics

Morgenstern, C., Schwaibold, M., Randerath, W., Bolz, A., Jané, R., (2010). Automatic non-invasive differentiation of obstructive and central hypopneas with nasal airflow compared to esophageal pressure Engineering in Medicine and Biology Society (EMBC) 32nd Annual International Conference of the IEEE , IEEE (Buenos Aires, Argentina) , 6142-6145

The differentiation of obstructive and central respiratory events is a major challenge in the diagnosis of sleep disordered breathing. Esophageal pressure (Pes) measurement is the gold-standard method to identify these events but its invasiveness deters its usage in clinical routine. Flattening patterns appear in the airflow signal during episodes of inspiratory flow limitation (IFL) and have been shown with invasive techniques to be useful to differentiate between central and obstructive hypopneas. In this study we present a new method for the automatic non-invasive differentiation of obstructive and central hypopneas solely with nasal airflow. An overall of 36 patients underwent full night polysomnography with systematic Pes recording and a total of 1069 hypopneas were manually scored by human experts to create a gold-standard annotation set. Features were automatically extracted from the nasal airflow signal to train and test our automatic classifier (Discriminant Analysis). Flattening patterns were non-invasively assessed in the airflow signal using spectral and time analysis. The automatic non-invasive classifier obtained a sensitivity of 0.71 and an accuracy of 0.69, similar to the results obtained with a manual non-invasive classification algorithm. Hence, flattening airflow patterns seem promising for the non-invasive differentiation of obstructive and central hypopneas.

Keywords: Practical, Experimental/ biomedical measurement, Feature extraction, Flow measurement, Medical disorders, Medical signal processing, Patient diagnosis, Pneumodynamics, Pressure measurement, Signal classification, Sleep, Spectral analysis/ automatic noninvasive differentiation, Obstructive hypopnea, Central hypopnea, Inspiratory flow limitation, Nasal airflow, Esophageal pressure, Polysomnography, Feature extraction, Discriminant analysis, Spectral analysis

Garde, A., Sörnmo, L., Jané, R., Giraldo, B. F., (2010). Correntropy-based nonlinearity test applied to patients with chronic heart failure Engineering in Medicine and Biology Society (EMBC) 32nd Annual International Conference of the IEEE , IEEE (Buenos Aires, Argentina) , 2399-2402

In this study we propose the correntropy function as a discriminative measure for detecting nonlinearities in the respiratory pattern of chronic heart failure (CHF) patients with periodic or nonperiodic breathing pattern (PB or nPB, respectively). The complexity seems to be reduced in CHF patients with higher risk level. Correntropy reflects information on both, statistical distribution and temporal structure of the underlying dataset. It is a suitable measure due to its capability to preserve nonlinear information. The null hypothesis considered is that the analyzed data is generated by a Gaussian linear stochastic process. Correntropy is used in a statistical test to reject the null hypothesis through surrogate data methods. Various parameters, derived from the correntropy and correntropy spectral density (CSD) to characterize the respiratory pattern, presented no significant differences when extracted from the iteratively refined amplitude adjusted Fourier transform (IAAFT) surrogate data. The ratio between the powers in the modulation and respiratory frequency bands R was significantly different in nPB patients, but not in PB patients, which reflects a higher presence of nonlinearities in nPB patients than in PB patients.

Keywords: Practical, Theoretical or Mathematical, Experimental/cardiology diseases, Fourier transforms, Medical signal processing, Pattern classification, Pneumodynamics, Spectral analysis, Statistical analysis, Stochastic processes/ correntropy based nonlinearity test, Chronic heart failure, Correntropy function, Respiratory pattern nonlinearities, CHF patients, Nonperiodic breathing pattern, Dataset statistical distribution, Dataset temporal structure, Nonlinear information, Null hypothesis, Gaussian linear stochastic process, Statistical test, Correntropy spectral density, Iteratively refined amplitude adjusted Fourier transform, Surrogate data, Periodic breathing pattern

Correa, L. S., Laciar, E., Mut, V., Giraldo, B. F., Torres, A., (2010). Multi-parameter analysis of ECG and Respiratory Flow signals to identify success of patients on weaning trials Engineering in Medicine and Biology Society (EMBC) 32nd Annual International Conference of the IEEE , IEEE (Buenos Aires, Argentina) -----, 6070-6073

Statistical analysis, power spectral density, and Lempel Ziv complexity, are used in a multi-parameter approach to analyze four temporal series obtained from the Electrocardiographic and Respiratory Flow signals of 126 patients on weaning trials. In which, 88 patients belong to successful group (SG), and 38 patients belong to failure group (FG), i.e. failed to maintain spontaneous breathing during trial. It was found that mean values of cardiac inter-beat and breath durations give higher values for SG than for FG; Kurtosis coefficient of the spectrum of the rapid shallow breathing index is higher for FG; also Lempel Ziv complexity mean values associated with the respiratory flow signal are bigger for FG. Patients were then classified with a pattern recognition neural network, obtaining 80% of correct classifications (81.6% for FG and 79.5% for SG).

Keywords: Electrocardiography, Medical signal processing, Neural nets, Pattern recognition, Pneumodynamics, Signal classification, Statistical analysis, ECG, Kurtosis coefficient, Lempel Ziv complexity, Breath durations, Cardiac interbeat durations, Electrocardiography, Multiparameter analysis, Pattern recognition neural network, Power spectral density, Respiratory flow signals, Signal classification, Spontaneous breathing, Statistical analysis, Weaning trials

Leder, R. S., Schlotthauer, G., Penzel, T., Jané, R., (2010). The natural history of the sleep and respiratory engineering track at EMBC 1988 to 2010 Engineering in Medicine and Biology Society (EMBC) 32nd Annual International Conference of the IEEE , IEEE (Buenos Aires, Argentina) , 288-291

Sleep science and respiratory engineering as medical subspecialties and research areas grew up side-by-side with biomedical engineering. The formation of EMBS in the 1950's and the discovery of REM sleep in the 1950's led to parallel development and interaction of sleep and biomedical engineering in diagnostics and therapeutics.

Keywords: Practical/ biomedical equipment, Biomedical measurement, Patient diagnosis, Patient monitoring, Patient treatment, Pneumodynamics, Sleep/ sleep engineering, Respiratory engineering, Automatic sleep analysis, Automatic sleep interpretation systems, Breathing, Biomedical, Engineering, Diagnostics, Therapeutics, REM sleep, Portable, Measurement, Ambulatory measurement, Monitoring

Mesquita, J., Fiz, J. A., Solà, J., Morera, J., Jané, R., (2010). Regular and non regular snore features as markers of SAHS Engineering in Medicine and Biology Society (EMBC) 32nd Annual International Conference of the IEEE , IEEE (Buenos Aires, Argentina) , 6138-6141

Sleep Apnea-Hypopnea Syndrome (SAHS) diagnosis is still done with an overnight multi-channel polysomnography. Several efforts are being made to study profoundly the snore mechanism and discover how it can provide an opportunity to diagnose the disease. This work introduces the concept of regular snores, defined as the ones produced in consecutive respiratory cycles, since they are produced in a regular way, without interruptions. We applied 2 thresholds (TH/sub adaptive/ and TH/sub median/) to the time interval between successive snores of 34 subjects in order to select regular snores from the whole all-night snore sequence. Afterwards, we studied the effectiveness that parameters, such as time interval between successive snores and the mean intensity of snores, have on distinguishing between different levels of SAHS severity (AHI (Apnea-Hypopnea Index)<5h/sup -1/, AHI<10 h/sup -1/, AHI<15h/sup -1/, AHI<30h/sup -1/). Results showed that TH/sub adaptive/ outperformed TH/sub median/ on selecting regular snores. Moreover, the outcome achieved with non-regular snores intensity features suggests that these carry key information on SAHS severity.

Keywords: Practical, Experimental/ acoustic signal processing, Bioacoustics, Biomedical measurement, Diseases, Feature extraction, Medical signal processing, Patient diagnosis, Pneumodynamics, Sleep/ nonregular snore features, SAHS markers, Sleep apnea hypopnea syndrome, Overnight multichannel polysomnography, Snore mechanism

Arcentales, A., Giraldo, B. F., Caminal, P., Diaz, I., Benito, S., (2010). Spectral analysis of the RR series and the respiratory flow signal on patients in weaning process Engineering in Medicine and Biology Society (EMBC) 32nd Annual International Conference of the IEEE , IEEE (Buenos Aires, Argentina) , 2485-2488

A considerable number of patients in weaning process have problems to keep spontaneous breathing during the trial and after it. This study proposes to extract characteristic parameters of the RR series and respiratory flow signal according to the patients' condition in weaning test. Three groups of patients have been considered: 93 patients with successful trials (group S), 40 patients that failed to maintain spontaneous breathing (group F), and 21 patients who had successful weaning trials, but that had to be reintubated before 48 hours (group R). The characterization was performed using spectral analysis of the signals, through the power spectral density, cross power spectral density and Coherence method. The parameters were extracted on the three frequency bands (VLF, LF and HF), and the principal statistical differences between groups were obtained in bands of VLF and HF. The results show an accuracy of 76.9% in the classification of the groups S and F.

Keywords: Biomedical measurement, Electrocardiography, Medical signal processing, Pneumodynamics, Spectral analysis, RR series, Coherence method, Cross power spectral density, Electrocardiography, Principal statistical differences, Respiratory flow signal, Spectral analysis, Spontaneous breathing, Weaning test

Fumagalli, L., Ferrari, G., Sampietro, M., Gomila, G., (2009). Quantitative nanoscale dielectric microscopy of single-layer supported biomembranes Nano Letters 9, (4), 1604-1608

We present the experimental demonstration of low-frequency dielectric constant imaging of single-layer supported biomembranes at the nanoscale. The dielectric constant image has been quantitatively reconstructed by combining the thickness and local capacitance obtained using a scanning force microscope equipped with a sub-attofarad low-frequency capacitance detector. This work opens new possibilities for studying bioelectric phenomena and the dielectric properties of biological membranes at the nanoscale.

Keywords: Atomic-force microscopy, Nnear-field microscopy, Purple membrane, Scanning capacitance, Biological-systems, Fluid, Spectroscopy, Resolution, Proteins, Dynamics

Roca-Cusachs, P., Gauthier, N. C., del Rio, A., Sheetz, M. P., (2009). Clustering of alpha(5)beta(1) integrins determines adhesion strength whereas alpha(v)beta(3) and talin enable mechanotransduction Proceedings of the National Academy of Sciences of the United States of America 106, (38), 16245-16250

A key molecular link between cells and the extracellular matrix is the binding between fibronectin and integrins alpha(5)beta(1) and alpha(v)beta(3). However, the roles of these different integrins in establishing adhesion remain unclear. We tested the adhesion strength of fibronectin-integrin-cytoskeleton linkages by applying physiological nanonewton forces to fibronectin-coated magnetic beads bound to cells. We report that the clustering of fibronectin domains within 40 nm led to integrin alpha(5)beta(1) recruitment, and increased the ability to sustain force by over six-fold. This force was supported by alpha(5)beta(1) integrin clusters. Importantly, we did not detect a role of either integrin alpha(v)beta(3) or talin 1 or 2 in maintaining adhesion strength. Instead, these molecules enabled the connection to the cytoskeleton and reinforcement in response to an applied force. Thus, high matrix forces are primarily supported by clustered alpha(5)beta(1) integrins, while less stable links to alpha(v)beta(3) integrins initiate mechanotransduction, resulting in reinforcement of integrin-cytoskeleton linkages through talin-dependent bonds.

Keywords: Cell-adhesion, Mechanical force, Vinculin-binding, Fibronectin, Activation, Dynamics, Domain, Alpha-v-beta-3, Translocation, Bonds

Milan, J. L., Planell, J. A., Lacroix, D., (2009). Computational modelling of the mechanical environment of osteogenesis within a polylactic acid-calcium phosphate glass scaffold Biomaterials 30, (25), 4219-4226

A computational model based on finite element method (FEM) and computational fluid dynamics (CFD) is developed to analyse the mechanical stimuli in a composite scaffold made of polylactic acid (PLA) matrix with calcium phosphate glass (Glass) particles. Different bioreactor loading conditions were simulated within the scaffold. In vitro perfusion conditions were reproduced in the model. Dynamic compression was also reproduced in an uncoupled fluid-structure scheme: deformation level was studied analyzing the mechanical response of scaffold alone under static compression while strain rate was studied considering the fluid flow induced by compression through fixed scaffold. Results of the model show that during perfusion test an inlet velocity of 25mum/s generates on scaffold surface a fluid flow shear stress which may stimulate osteogenesis. Dynamic compression of 5% applied on the PLA-Glass scaffold with a strain rate of 0.005s(-1) has the benefit to generate mechanical stimuli based on both solid shear strain and fluid flow shear stress on large scaffold surface area. Values of perfusion inlet velocity or compression strain rate one order of magnitude lower may promote cell proliferation while values one order of magnitude higher may be detrimental for cells. FEM-CFD scaffold models may help to determine loading conditions promoting bone formation and to interpret experimental results from a mechanical point of view.

Keywords: Bone tissue engineering, Scaffold, Finite element analysis, Computational fluid dynamics, Mechanical stimuli

Olivares, A. L., Marshal, E., Planell, J. A., Lacroix, D., (2009). Finite element study of scaffold architecture design and culture conditions for tissue engineering Biomaterials 30, (30), 6142-6149

Tissue engineering scaffolds provide temporary mechanical support for tissue regeneration and transfer global mechanical load to mechanical stimuli to cells through its architecture. In this study the interactions between scaffold pore morphology, mechanical stimuli developed at the cell microscopic level, and culture conditions applied at the macroscopic scale are studied on two regular scaffold structures. Gyroid and hexagonal scaffolds of 55% and 70% porosity were modeled in a finite element analysis and were submitted to an inlet fluid flow or compressive strain. A mechanoregulation theory based on scaffold shear strain and fluid shear stress was applied for determining the influence of each structures on the mechanical stimuli on initial conditions. Results indicate that the distribution of shear stress induced by fluid perfusion is very dependent on pore distribution within the scaffold. Gyroid architectures provide a better accessibility of the fluid than hexagonal structures. Based on the mechanoregulation theory, the differentiation process in these structures was more sensitive to inlet fluid flow than axial strain of the scaffold. This study provides a computational approach to determine the mechanical stimuli at the cellular level when cells are cultured in a bioreactor and to relate mechanical stimuli with cell differentiation.

Keywords: Tissue engineering, Scaffold, Rapid prototyping, Computational fluid dynamics, Finite element

Gimenez-Oya, V., Villacanas, O., Fernàndez-Busquets, X., Rubio-Martinez, J., Imperial, S., (2009). Mimicking direct protein-protein and solvent-mediated interactions in the CDP-methylerythritol kinase homodimer: a pharmacophore-directed virtual screening approach Journal of Molecular Modeling 15, (8), 997-1007

The 2C-methylerythritol 4-phosphate (MEP) pathway for the biosynthesis of isopentenyl pyrophosphate and its isomer dimethylallyl pyrophosphate, which are the precursors of isoprenoids, is present in plants, in the malaria parasite Plasmodium falciparum and in most eubacteria, including pathogenic agents. However, the MEP pathway is absent from fungi and animals, which have exclusively the mevalonic acid pathway. Given the characteristics of the MEP pathway, its enzymes represent potential targets for the generation of selective antibacterial, antimalarial and herbicidal molecules. We have focussed on the enzyme 4-(cytidine 5'-diphospho)-2-C-methyl-D: -erythritol kinase (CMK), which catalyses the fourth reaction step of the MEP pathway. A molecular dynamics simulation was carried out on the CMK dimer complex, and protein-protein interactions analysed, considering also water-mediated interactions between monomers. In order to find small molecules that bind to CMK and disrupt dimer formation, interactions observed in the dynamics trajectory were used to model a pharmacophore used in database searches. Using an intensity-fading matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry approach, one compound was found to interact with CMK. The data presented here indicate that a virtual screening approach can be used to identify candidate molecules that disrupt the CMK-CMK complex. This strategy can contribute to speeding up the discovery of new antimalarial, antibacterial, and herbicidal compounds.

Keywords: Solvent-mediated interactions, Protein-protein interactions, Molecular dynamics, Drug design, Intensisty-fading MALDI-TOF mass spectrometry

Gustavsson, J., Altankov, G., Errachid, A., Samitier, J., Planell, J. A., Engel, E., (2008). Surface modifications of silicon nitride for cellular biosensor applications Journal of Materials Science-Materials in Medicine 19, (4), 1839-1850

Thin films of silicon nitride (Si3N4) can be used in several kinds of micro-sized biosensors as a material to monitor fine environmental changes related to the process of bone formation in vitro. We found however that Si3N4 does not provide optimal conditions for osseointegration as osteoblast-like MG-63 cells tend to detach from the surface when cultured over confluence. Therefore Si3N4 was modified with self-assembled monolayers bearing functional end groups of primary amine (NH2) and carboxyl (COOH) respectively. Both these modifications enhanced the interaction with confluent cell layers and thus improve osseointegration over Si3N4. Furthermore it was observed that the NH2 functionality increased the adsorption of fibronectin (FN), promoted cell proliferation, but delayed the differentiation. We also studied the fate of pre-adsorbed and secreted FN from cells to learn more about the impact of above functionalities for the development of provisional extracellular matrix on materials interface. Taken together our data supports that Si3N4 has low tissue integration but good cellular biocompatibility and thus is appropriate in cellular biosensor applications such as the ion-sensitive field effect transistor (ISFET). COOH and NH2 chemistries generally improve the interfacial tissue interaction with the sensor and they are therefore suitable substrates for monitoring cellular growth or matrix deposition using electrical impedance spectroscopy.

Keywords: Adsorption, Amines/chemistry, Biocompatible Materials/ chemistry, Biosensing Techniques, Cell Differentiation, Cell Line, Cell Proliferation, Electric Impedance, Extracellular Matrix/metabolism, Fibronectins/chemistry, Humans, Materials Testing, Osteoblasts/ cytology, Silicon Compounds/ chemistry, Surface Properties

Comments are closed