DONATE

Publications

by Keyword: Osteosarcoma

Sole-Marti, X, Labay, C, Raymond, Y, Franch, J, Benitez, R, Ginebra, MP, Canal, C, (2023). Ceramic-hydrogel composite as carrier for cold-plasma reactive-species: Safety and osteogenic capacity in vivo Plasma Processes And Polymers 20, 2200155

Plasma-treated hydrogels have been put forward as a potential selective osteosarcoma therapy through the release of reactive species to the diseased site. To allow their translation to the clinics, it is crucial to show that the oxidative stress delivered by such hydrogels does not adversely affect healthy tissues. This is evaluated here by investigating the in vivo performance of a robocasted calcium phosphate cement infiltrated by a plasma-treated hydrogel. The plasma-treated composite implanted in a critical size bone defect of healthy rabbits revealed its safety, allowing equivalent bone ingrowth compared to the control scaffolds and to that of direct plasma treatment of the bone defect. This opens the door for using composite biomaterials containing plasma-generated reactive species in bone therapies.

JTD Keywords: Atmospheric plasma, Bone, Bone graft, Ceramic-hydrogel composite, Cold atmospheric plasma, Local therapy, Osteosarcoma, Plasma-treated polymer solutions, Substitutes, Survival


Hamouda, I, Labay, C, Cvelbar, U, Ginebra, MP, Canal, C, (2021). Selectivity of direct plasma treatment and plasma-conditioned media in bone cancer cell lines Scientific Reports 11, 17521

Atmospheric pressure plasma jets have been shown to impact several cancer cell lines, both in vitro and in vivo. These effects are based on the biochemistry of the reactive oxygen and nitrogen species generated by plasmas in physiological liquids, referred to as plasma-conditioned liquids. Plasma-conditioned media are efficient in the generation of reactive species, inducing selective cancer cell death. However, the concentration of reactive species generated by plasma in the cell culture media of different cell types can be highly variable, complicating the ability to draw precise conclusions due to the differential sensitivity of different cells to reactive species. Here, we compared the effects of direct and indirect plasma treatment on non-malignant bone cells (hOBs and hMSCs) and bone cancer cells (SaOs-2s and MG63s) by treating the cells directly or exposing them to previously treated cell culture medium. Biological effects were correlated with the concentrations of reactive species generated in the liquid. A linear increase in reactive species in the cell culture medium was observed with increased plasma treatment time independent of the volume treated. Values up to 700 µM for H2O2 and 140 µM of NO2− were attained in 2 mL after 15 min of plasma treatment in AdvDMEM cell culture media. Selectivity towards bone cancer cells was observed after both direct and indirect plasma treatments, leading to a decrease in bone cancer cell viability at 72 h to 30% for the longest plasma treatment times while maintaining the survival of non-malignant cells. Therefore, plasma-conditioned media may represent the basis for a potentially novel non-invasive technique for bone cancer therapy.

JTD Keywords: expression, in-vitro, jet, mechanisms, nitrate, nitrite, osteosarcoma cells, reactive oxygen, Cold atmospheric plasma


Tornín, J, Villasante, A, Solé-Martí, X, Ginebra, MP, Canal, C, (2021). Osteosarcoma tissue-engineered model challenges oxidative stress therapy revealing promoted cancer stem cell properties Free Radical Biology And Medicine 164, 107-118

© 2020 The Author(s) The use of oxidative stress generated by Cold Atmospheric Plasma (CAP) in oncology is being recently studied as a novel potential anti-cancer therapy. However, the beneficial effects of CAP for treating osteosarcoma have mostly been demonstrated in 2-dimensional cultures of cells, which do not mimic the complexity of the 3-dimensional (3D) bone microenvironment. In order to evaluate the effects of CAP in a relevant context of the human disease, we developed a 3D tissue-engineered model of osteosarcoma using a bone-like scaffold made of collagen type I and hydroxyapatite nanoparticles. Human osteosarcoma cells cultured within the scaffold showed a high capacity to infiltrate and proliferate and to exhibit osteomimicry in vitro. As expected, we observed significantly different functional behaviors between monolayer and 3D cultures when treated with Cold Plasma-Activated Ringer's Solution (PAR). Our data reveal that the 3D environment not only protects cells from PAR-induced lethality by scavenging and diminishing the amount of reactive oxygen and nitrogen species generated by CAP, but also favours the stemness phenotype of osteosarcoma cells. This is the first study that demonstrates the negative effect of PAR on cancer stem-like cell subpopulations in a 3D biomimetic model of cancer. These findings will allow to suitably re-focus research on plasma-based therapies in future.

JTD Keywords: 3d tumor model, cancer stem-like cells, cold atmospheric plasma, osteosarcoma, oxidative stress, plasma activated liquids, reactive oxygen and nitrogen species, 3d tumor model, Cancer stem-like cells, Cold atmospheric plasma, Osteosarcoma, Oxidative stress, Plasma activated liquids, Reactive oxygen and nitrogen species


Mateu-Sanz, M, Tornin, J, Ginebra, MP, Canal, C, (2021). Cold Atmospheric Plasma: A New Strategy Based Primarily on Oxidative Stress for Osteosarcoma Therapy Journal Of Clinical Medicine 10, 893

Osteosarcoma is the most common primary bone tumor, and its first line of treatment presents a high failure rate. The 5-year survival for children and teenagers with osteosarcoma is 70% (if diagnosed before it has metastasized) or 20% (if spread at the time of diagnosis), stressing the need for novel therapies. Recently, cold atmospheric plasmas (ionized gases consisting of UV-Vis radiation, electromagnetic fields and a great variety of reactive species) and plasma-treated liquids have been shown to have the potential to selectively eliminate cancer cells in different tumors through an oxidative stress-dependent mechanism. In this work, we review the current state of the art in cold plasma therapy for osteosarcoma. Specifically, we emphasize the mechanisms unveiled thus far regarding the action of plasmas on osteosarcoma. Finally, we review current and potential future approaches, emphasizing the most critical challenges for the development of osteosarcoma therapies based on this emerging technique.

JTD Keywords: cancer stem cells, cold atmospheric plasma, osteosarcoma, oxidative stress, plasma treated liquids, reactive oxygen and nitrogen species, Antineoplastic activity, Antineoplastic agent, Cancer chemotherapy, Cancer stem cell, Cancer stem cells, Cancer surgery, Cancer survival, Cell therapy, Cold atmospheric plasma, Cold atmospheric plasma therapy, Electromagnetism, Human, In vitro study, Intracellular signaling, Oncogene, Osteosarcoma, Oxidative stress, Plasma treated liquids, Reactive nitrogen species, Reactive oxygen and nitrogen species, Reactive oxygen metabolite, Review, Tumor microenvironment


Mateu-Sanz, M., Tornín, J., Brulin, B., Khlyustova, A., Ginebra, M. P., Layrolle, P., Canal, C., (2020). Cold plasma-treated ringer's saline: A weapon to target osteosarcoma Cancers 12, (1), 227

Osteosarcoma (OS) is the main primary bone cancer, presenting poor prognosis and difficult treatment. An innovative therapy may be found in cold plasmas, which show anti-cancer effects related to the generation of reactive oxygen and nitrogen species in liquids. In vitro models are based on the effects of plasma-treated culture media on cell cultures. However, effects of plasma-activated saline solutions with clinical application have not yet been explored in OS. The aim of this study is to obtain mechanistic insights on the action of plasma-activated Ringer’s saline (PAR) for OS therapy in cell and organotypic cultures. To that aim, cold atmospheric plasma jets were used to obtain PAR, which produced cytotoxic effects in human OS cells (SaOS-2, MG-63, and U2-OS), related to the increasing concentration of reactive oxygen and nitrogen species generated. Proof of selectivity was found in the sustained viability of hBM-MSCs with the same treatments. Organotypic cultures of murine OS confirmed the time-dependent cytotoxicity observed in 2D. Histological analysis showed a decrease in proliferating cells (lower Ki-67 expression). It is shown that the selectivity of PAR is highly dependent on the concentrations of reactive species, being the differential intracellular reactive oxygen species increase and DNA damage between OS cells and hBM-MSCs key mediators for cell apoptosis.

JTD Keywords: Bone cancer, Cold atmospheric plasma, Organotypic model, Osteosarcoma, Plasma-activated liquid, Reactive species, Ringer's saline


Labay, C., Roldán, M., Tampieri, F., Stancampiano, A., Bocanegra, P. E., Ginebra, M. P., Canal, C., (2020). Enhanced generation of reactive species by cold plasma in gelatin solutions for selective cancer cell death ACS Applied Materials and Interfaces 12, (42), 47256-47269

Atmospheric pressure plasma jets generate reactive oxygen and nitrogen species (RONS) in liquids and biological media, which find application in the new area of plasma medicine. These plasma-treated liquids were demonstrated recently to possess selective properties on killing cancer cells and attracted attention toward new plasma-based cancer therapies. These allow for local delivery by injection in the tumor but can be quickly washed away by body fluids. By confining these RONS in a suitable biocompatible delivery system, great perspectives can be opened in the design of novel biomaterials aimed for cancer therapies. Gelatin solutions are evaluated here to store RONS generated by atmospheric pressure plasma jets, and their release properties are evaluated. The concentration of RONS was studied in 2% gelatin as a function of different plasma parameters (treatment time, nozzle distance, and gas flow) with two different plasma jets. Much higher production of reactive species (H2O2 and NO2-) was revealed in the polymer solution than in water after plasma treatment. The amount of RONS generated in gelatin is greatly improved with respect to water, with concentrations of H2O2 and NO2- between 2 and 12 times higher for the longest plasma treatments. Plasma-treated gelatin exhibited the release of these RONS to a liquid media, which induced an effective killing of bone cancer cells. Indeed, in vitro studies on the sarcoma osteogenic (SaOS-2) cell line exposed to plasma-treated gelatin led to time-dependent increasing cytotoxicity with the longer plasma treatment time of gelatin. While the SaOS-2 cell viability decreased to 12%-23% after 72 h for cells exposed to 3 min of treated gelatin, the viability of healthy cells (hMSC) was preserved (?90%), establishing the selectivity of the plasma-treated gelatin on cancer cells. This sets the basis for designing improved hydrogels with high capacity to deliver RONS locally to tumors.

JTD Keywords: Cold atmospheric plasma, Hydrogel, Osteosarcoma, Reactive oxygen and nitrogen species


Canal, C., Fontelo, R., Hamouda, I., Guillem-Marti, J., Cvelbar, U., Ginebra, M. P., (2017). Plasma-induced selectivity in bone cancer cells death Free Radical Biology and Medicine , 110, 72-80

Background: Current therapies for bone cancers - either primary or metastatic – are difficult to implement and unfortunately not completely effective. An alternative therapy could be found in cold plasmas generated at atmospheric pressure which have already demonstrated selective anti-tumor action in a number of carcinomas and in more relatively rare brain tumors. However, its effects on bone cancer are still unknown. Methods: Herein, we employed an atmospheric pressure plasma jet (APPJ) to validate its selectivity towards osteosarcoma cell line vs. osteoblasts & human mesenchymal stem cells. Results: Cytotoxicity following direct interaction of APPJ with cells is comparable to indirect interaction when only liquid medium is treated and subsequently added to the cells, especially on the long-term (72 h of cell culture). Moreover, following contact of the APPJ treated medium with cells, delayed effects are observed which lead to 100% bone cancer cell death through apoptosis (decreased cell viability with incubation time in contact with APPJ treated medium from 24 h to 72 h), while healthy cells remain fully viable and unaffected by the treatment. Conclusions: The high efficiency of the indirect treatment indicates that an important role is played by the reactive oxygen species (ROS) and reactive nitrogen species (RNS) in the gaseous plasma stage and then transmitted to the liquid phase, which overall lead to lethal and selective action towards osteosarcoma cells. These findings open new pathways for treatment of metastatic bone disease with a minimally invasive approach.

JTD Keywords: Atmospheric pressure plasma jet, Bone cancer, hMSC, HOb, Liquids, Osteoblasts, Osteosarcoma, SaOS-2