DONATE

Publications

by Keyword: Pathogens

Vitonyte, J., Manca, M. L., Caddeo, C., Valenti, D., Peris, J. E., Usach, I., Nacher, A., Matos, M., Gutiérrez, G., Orrù, G., Fernàndez-Busquets, X., Fadda, A. M., Manconi, M., (2017). Bifunctional viscous nanovesicles co-loaded with resveratrol and gallic acid for skin protection against microbial and oxidative injuries European Journal of Pharmaceutics and Biopharmaceutics 114, 278-287

Resveratrol and gallic acid were co-loaded in phospholipid vesicles aiming at protecting the skin from external injuries, such as oxidative stress and microbial infections. Liposomes were prepared using biocompatible phospholipids dispersed in water. To improve vesicle stability and applicability, the phospholipids and the phenols were dispersed in water/propylene glycol or water/glycerol, thus obtaining PEVs and glycerosomes, respectively. The vesicles were characterized by size, morphology, physical stability, and their therapeutic efficacy was investigated in vitro. The vesicles were spherical, unilamellar and small in size: liposomes and glycerosomes were around 70 nm in diameter, while PEVs were larger (∼170 nm). The presence of propylene glycol or glycerol increased the viscosity of the vesicle systems, positively affecting their stability. The ability of the vesicles to promote the accumulation of the phenols (especially gallic acid) in the skin was demonstrated, as well as their low toxicity and great ability to protect keratinocytes and fibroblasts from oxidative damage. Additionally, an improvement of the antimicrobial activity of the phenols was shown against different skin pathogens. The co-loading of resveratrol and gallic acid in modified phospholipid vesicles represents an innovative, bifunctional tool for preventing and treating skin affections.

JTD Keywords: Fibroblasts, Keratinocytes, Phenol, Phospholipid vesicle, Skin pathogens


Crespo, Anna, Pedraz, Lucas, Van Der Hofstadt, Marc, Gomila, Gabriel, Torrents, Eduard, (2017). Regulation of ribonucleotide synthesis by the Pseudomonas aeruginosa two-component system AlgR in response to oxidative stress Scientific Reports 7, (1), 17892

Ribonucleotide reductases (RNR) catalyze the last step of deoxyribonucleotide synthesis, and are therefore essential to DNA-based life. Three forms of RNR exist: classes I, II, and III. While eukaryotic cells use only class Ia RNR, bacteria can harbor any combination of classes, granting them adaptability. The opportunistic pathogen Pseudomonas aeruginosa surprisingly encodes all three classes, allowing it to thrive in different environments. Here we study an aspect of the complex RNR regulation whose molecular mechanism has never been elucidated, the well-described induction through oxidative stress, and link it to the AlgZR two-component system, the primary regulator of the mucoid phenotype. Through bioinformatics, we identify AlgR binding locations in RNR promoters, which we characterize functionally through EMSA and physically through AFM imaging. Gene reporter assays in different growth models are used to study the AlgZR-mediated control on the RNR network under various environmental conditions and physiological states. Thereby, we show that the two-component system AlgZR, which is crucial for bacterial conversion to the mucoid phenotype associated with chronic disease, controls the RNR network and directs how the DNA synthesis pathway is modulated in mucoid and non-mucoid biofilms, allowing it to respond to oxidative stress.

JTD Keywords: Bacterial genes, Bacteriology, Pathogens


Crespo, A., Gavaldà, J., Julián, E., Torrents, E., (2017). A single point mutation in class III ribonucleotide reductase promoter renders Pseudomonas aeruginosa PAO1 inefficient for anaerobic growth and infection Scientific Reports 7, (1), 13350

Pseudomonas aeruginosa strain PAO1 has become the reference strain in many laboratories. One enzyme that is essential for its cell division is the ribonucleotide reductase (RNR) enzyme that supplies the deoxynucleotides required for DNA synthesis and repair. P. aeruginosa is one of the few microorganisms that encodes three different RNR classes (Ia, II and III) in its genome, enabling it to grow and adapt to diverse environmental conditions, including during infection. In this work, we demonstrate that a lack of RNR activity induces cell elongation in P. aeruginosa PAO1. Moreover, RNR gene expression during anaerobiosis differs among P. aeruginosa strains, with class III highly expressed in P. aeruginosa clinical isolates relative to the laboratory P. aeruginosa PAO1 strain. A single point mutation was identified in the P. aeruginosa PAO1 strain class III RNR promoter region that disrupts its anaerobic transcription by the Dnr regulator. An engineered strain that induces the class III RNR expression allows P. aeruginosa PAO1 anaerobic growth and increases its virulence to resemble that of clinical strains. Our results demonstrate that P. aeruginosa PAO1 is adapted to laboratory conditions and is not the best reference strain for anaerobic or infection studies.

JTD Keywords: Bacterial genes, Cellular microbiology, Pathogens


Adrados, B., Julian, E., Codony, F., Torrents, E., Luquin, M., Morato, J., (2011). Prevalence and concentration of non-tuberculous Mycobacteria in cooling towers by means of quantitative PCR: A prospective study Current Microbiology , 62, (1), 313-319

There is an increasing level of interest in non-tuberculous mycobacteria (NTM) due to the increasing reported rates of diseases caused by them. Although it is well known that NTM are widely distributed in the environment it is necessary to identify its reservoirs to prevent possible infections. In this study, we aimed to investigate the occurrence and levels of NTM in cooling towers to provide evidences for considering these settings as possible sources of respiratory infections. In the current study, we detected and quantified the presence of NTM by means of a rapid method in water samples taken from 53 cooling towers of an urban area (Barcelona, Spain). A genus-specific quantitative PCR (Q-PCR) assay with a quantification limit (QL) of 500 cells l(-1) was used. 56% (30) of samples were positive with a concentration range from 4.6 x 10(3) to 1.79 x 10(6) cells l(-1). In some cases (9/30), samples were positive but with levels below the QL. The colonization rate confirmed that cooling towers could be considered as a potential reservoir for NTM. This study also evaluated Q-PCR as a useful method to detect and quantify NTM in samples coming from environmental sources.

JTD Keywords: Real-time PCR, Disease, Identification, Tuberculosis, Pathogens, Waters