Publications

by Keyword: Radial glia


By year:[ 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Gil, V., Nocentini, S., del Río, J. A., (2014). Historical first descriptions of Cajal-Retzius cells: From pioneer studies to current knowledge Frontiers in Neuroanatomy 8, Article 32 (9)

Santiago Ramón y Cajal developed a great body of scientific research during the last decade of 19th century, mainly between 1888 and 1892, when he published more than 30 manuscripts. The neuronal theory, the structure of dendrites and spines, and fine microscopic descriptions of numerous neural circuits are among these studies. In addition, numerous cell types (neuronal and glial) were described by Ramón y Cajal during this time using this "reazione nera" or Golgi method. Among these neurons were the special cells of the molecular layer of the neocortex. These cells were also termed Cajal cells or Retzius cells by other colleagues. Today these cells are known as Cajal-Retzius cells. From the earliest description, several biological aspects of these fascinating cells have been analyzed (e.g., cell morphology, physiological properties, origin and cellular fate, putative function during cortical development, etc). In this review we will summarize in a temporal basis the emerging knowledge concerning this cell population with specific attention the pioneer studies of Santiago Ramón y Cajal.

Keywords: Calretinin, Cortical hem, Neocortical development, Pioneer neurons, Radial glia, Reelin


Álvarez, Z., Sena, E., Mattotti, M., Engel, E., Alcántara, S., (2014). An efficient and reproducible method to culture Bergmann and cortical radial glia using textured PMMA Journal of Neuroscience Methods 232, 93-101

Background: Radial glia cells comprise the principal population of neural stem cells (NSC) during development. Attempts to develop reproducible radial glia and NSC culture methods have met with variable results, yielding non-adherent cultures or requiring the addition of growth factors. Recent studies demonstrated that a 2-μm patterned poly-methyl methacrylate (ln2 PMMA) grooved scaffold, by mimicking the biophysical and microtopographic properties of the embryonic NSC niche, induces the de-differentiation of glial cells into functional radial glia cells. New method: Here we describe a method for obtaining cultures of adherent Bergmann radial glia (BRG) and cortical radial glia (CRG). The growth substrate is ln2 PMMA and the addition of growth factors is not required. Results: Postnatal glia obtained from mouse cerebellum or cerebral cortex and grown on ln2 PMMA adopted a BRG/CRG phenotype characterized by a bipolar shape, the up-regulation of progenitor markers such as nestin and Sox2, and the down-regulation of vimentin and GFAP. Neurons cultured over the BRG/CRG aligned their processes with those of the glial shafts, thus mimicking the behavior of migrating neuronal cells. Comparison with existing methods: The ln2 PMMA culture method offers an ideal system for analyzing both the biochemical factors controlling the neurogenic potential of BRG/CRG and neuronal migration. Conclusions: The ln2 PMMA method is a reproducible system to obtain immature BRG/CRG preparations in vitro. It can be used to study the properties of CNS progenitor cells as well as the interactions between radial glia and neurons, and supports cultured progenitors for use in different applications. © 2014 Elsevier B.V.

Keywords: Astrocytes, Bergmann glia, Micro-patterning, Poly-methyl methacrylate (PMMA), Progenitors, Radial glia, Surface topography


Comments are closed