DONATE

Publications

by Keyword: Storage

Loeck, M, Placci, M, Muro, S, (2023). Effect of acid sphingomyelinase deficiency in type A Niemann-Pick disease on the transport of therapeutic nanocarriers across the blood-brain barrier Drug Delivery And Translational Research 13, 3077-3093

ASM deficiency in Niemann-Pick disease type A results in aberrant cellular accumulation of sphingomyelin, neuroinflammation, neurodegeneration, and early death. There is no available treatment because enzyme replacement therapy cannot surmount the blood-brain barrier (BBB). Nanocarriers (NCs) targeted across the BBB via transcytosis might help; yet, whether ASM deficiency alters transcytosis remains poorly characterized. We investigated this using model NCs targeted to intracellular adhesion molecule-1 (ICAM-1), transferrin receptor (TfR), or plasmalemma vesicle-associated protein-1 (PV1) in ASM-normal vs. ASM-deficient BBB models. Disease differentially changed the expression of all three targets, with ICAM-1 becoming the highest. Apical binding and uptake of anti-TfR NCs and anti-PV1 NCs were unaffected by disease, while anti-ICAM-1 NCs had increased apical binding and decreased uptake rate, resulting in unchanged intracellular NCs. Additionally, anti-ICAM-1 NCs underwent basolateral reuptake after transcytosis, whose rate was decreased by disease, as for apical uptake. Consequently, disease increased the effective transcytosis rate for anti-ICAM-1 NCs. Increased transcytosis was also observed for anti-PV1 NCs, while anti-TfR NCs remained unaffected. A fraction of each formulation trafficked to endothelial lysosomes. This was decreased in disease for anti-ICAM-1 NCs and anti-PV1 NCs, agreeing with opposite transcytosis changes, while it increased for anti-TfR NCs. Overall, these variations in receptor expression and NC transport resulted in anti-ICAM-1 NCs displaying the highest absolute transcytosis in the disease condition. Furthermore, these results revealed that ASM deficiency can differently alter these processes depending on the particular target, for which this type of study is key to guide the design of therapeutic NCs.© 2023. Controlled Release Society.

JTD Keywords: asm deficiency, blood-brain barrier, delivery, determines, drug, endocytosis, enzymes, icam-1, lysosomal storage disease, mechanisms, nanoparticles, natural-history, niemann-pick disease type a, pv-1, receptor-mediated transcytosis, trafficking, transferrin receptor, Asm deficiency, Blood–brain barrier, Drug nanocarriers, Icam-1, Icam-1-targeted nanocarriers, Lysosomal storage disease, Niemann-pick disease type a, Pv-1, Receptor-mediated transcytosis, Transferrin receptor


del Moral, M, Loeck, M, Muntimadugu, E, Vives, G, Pham, V, Pfeifer, P, Battaglia, G, Muro, S, Andrianov, AK, (2023). Role of the Lactide:Glycolide Ratio in PLGA Nanoparticle Stability and Release under Lysosomal Conditions for Enzyme Replacement Therapy of Lysosomal Storage Disorders J Funct Biomater 14, 440

Prior studies demonstrated that encapsulation in poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) enhanced the delivery of enzymes used for replacement therapy (ERT) of lysosomal storage disorders (LSDs). This study examined how the copolymer lactide:glycolide ratio impacts encapsulation, physicochemical characteristics, stability, and release under lysosomal conditions. Hyaluronidase, deficient in mucopolysaccharidosis IX, was encapsulated in NPs synthesized using 50:50, 60:40, or 75:25 lactide:glycolide copolymers. All NPs had diameters compatible with cellular transport (≤168 nm) and polydispersity indexes (≤0.16) and ζ-potentials (≤-35 mV) compatible with colloidal stability. Yet, their encapsulation efficiency varied, with 75:25 NPs and 60:40 NPs having the lowest and highest EE, respectively (15% vs. 28%). Under lysosomal conditions, the 50:50 copolymer degraded fastest (41% in 1 week), as expected, and the presence of a targeting antibody coat did not alter this result. Additionally, 60:40 NPs destabilized fastest (<1 week) because of their smaller diameter, and 75:25 NPs did not destabilize in 4 weeks. All formulations presented burst release under lysosomal conditions (56-78% of the original load within 30 min), with 50:50 and 60:40 NPs releasing an additional small fraction after week 1. This provided 4 weeks of sustained catalytic activity, sufficient to fully degrade a substrate. Altogether, the 60:40 NP formulation is preferred given its higher EE, and 50:50 NPs represent a valid alternative, while the highest stability of 75:25 NPs may impair lysosomes. These results can guide future studies aiming to translate PLGA NP-based ERT for this and other LSDs.

JTD Keywords: biodegradation, copolymer ratio, degradation, drug-delivery, emulsification, enzyme release, enzyme replacement therapy, hyaluronidase, mechanisms, microspheres, nanoparticle stability, poly(lactide-co-glycolide) nanoparticles, size, sphingomyelinase, transport, Central-nervous-system, Copolymer ratio, Enzyme release, Enzyme replacement therapy, Hyaluronidase, Lysosomal storage disorder, Nanoparticle stability, Poly(lactide-co-glycolide) nanoparticles


Placci, M, Giannotti, MI, Muro, S, (2023). Polymer-based drug delivery systems under investigation for enzyme replacement and other therapies of lysosomal storage disorders Advanced Drug Delivery Reviews 197, 114683

Lysosomes play a central role in cellular homeostasis and alterations in this compartment associate with many diseases. The most studied example is that of lysosomal storage disorders (LSDs), a group of 60 + maladies due to genetic mutations affecting lysosomal components, mostly enzymes. This leads to aberrant intracellular storage of macromolecules, altering normal cell function and causing multiorgan syndromes, often fatal within the first years of life. Several treatment modalities are available for a dozen LSDs, mostly consisting of enzyme replacement therapy (ERT) strategies. Yet, poor biodistribution to main targets such as the central nervous system, musculoskeletal tissue, and others, as well as generation of blocking antibodies and adverse effects hinder effective LSD treatment. Drug delivery systems are being studied to surmount these obstacles, including polymeric constructs and nanoparticles that consti-tute the focus of this article. We provide an overview of the formulations being tested, the diseases they aim to treat, and the results observed from respective in vitro and in vivo studies. We also discuss the advantages and disadvantages of these strategies, the remaining gaps of knowledge regarding their per-formance, and important items to consider for their clinical translation. Overall, polymeric nanocon-structs hold considerable promise to advance treatment for LSDs.(c) 2023 Elsevier B.V. All rights reserved.

JTD Keywords: cellular and animal models, enzyme replacement therapy, lysosomal storage disorders, nanoemulsions, nanoparticles, Beta-glucuronidase deficiency, Blood-brain-barrier, Cellular and animal models, Central-nervous-system, Enzyme replacement therapy, Feline gm1 gangliosidosis, Human acid sphingomyelinase, Human alpha-galactosidase, Lysosomal storage disorders, Mucopolysaccharidosis type-ii, Nanoemulsions, Nanoparticles, Neuronal ceroid-lipofuscinosis, Niemann-pick-disease, Pluripotent stem-cells, Polymer-based drug delivery systems


Solomon, M, Loeck, M, Silva-Abreu, M, Moscoso, R, Bautista, R, Vigo, M, Muro, S, (2022). Altered blood-brain barrier transport of nanotherapeutics in lysosomal storage diseases Journal Of Controlled Release 349, 1031-1044

Treatment of neurological lysosomal storage disorders (LSDs) are limited because of impermeability of the blood-brain barrier (BBB) to macromolecules. Nanoformulations targeting BBB transcytosis are being explored, but the status of these routes in LSDs is unknown. We studied nanocarriers (NCs) targeted to the transferrin receptor (TfR), ganglioside GM1 or ICAM1, associated to the clathrin, caveolar or cell adhesion molecule (CAM) routes, respectively. We used brain endothelial cells and mouse models of acid sphingomyelinase-deficient Niemann Pick disease (NPD), and postmortem LSD patients' brains, all compared to respective controls. NC transcytosis across brain endothelial cells and brain distribution in mice were affected, yet through different mechanisms. Reduced TfR and clathrin expression were found, along with decreased transcytosis in cells and mouse brain distribution. Caveolin-1 expression and GM1 transcytosis were also reduced, yet increased GM1 levels seemed to compensate, providing similar NC brain distribution in NPD vs. control mice. A tendency to lower NHE-1 levels was seen, but highly increased ICAM1 expression in cells and human brains correlated with increased transcytosis and brain distribution in mice. Thus, transcytosis-related alterations in NPD and likely other LSDs may impact therapeutic access to the brain, illustrating the need for these mechanistic studies.Copyright © 2022 Elsevier B.V. All rights reserved.

JTD Keywords: acid sphingomyelinase, antibody-affinity, blood -brain barrier, drug-delivery, icam-1-targeted nanocarriers, in-vivo, mediated endocytosis, model, neurological diseases, niemann-pick, targeted nanocarriers, trafficking, transcytosis pathways, Blood-brain barrier, Central-nervous-system, Lysosomal storage disorders, Neurological diseases, Targeted nanocarriers, Transcytosis pathways


Seras-Franzoso, J, Diaz-Riascos, ZV, Corchero, JL, González, P, Garcia-Aranda, N, Mandaña, M, Riera, R, Boullosa, A, Mancilla, S, Grayston, A, Moltó-Abad, M, Garcia-Fruitós, E, Mendoza, R, Pintos-Morell, G, Albertazzi, L, Rosell, A, Casas, J, Villaverde, A, Schwartz, S, Abasolo, I, (2021). Extracellular vesicles from recombinant cell factories improve the activity and efficacy of enzymes defective in lysosomal storage disorders Journal Of Extracellular Vesicles 10, e12058

In the present study the use of extracellular vesicles (EVs) as vehicles for therapeutic enzymes in lysosomal storage disorders was explored. EVs were isolated from mammalian cells overexpressing alpha-galactosidase A (GLA) or N-sulfoglucosamine sulfohydrolase (SGSH) enzymes, defective in Fabry and Sanfilippo A diseases, respectively. Direct purification of EVs from cell supernatants was found to be a simple and efficient method to obtain highly active GLA and SGSH proteins, even after EV lyophilization. Likewise, EVs carrying GLA (EV-GLA) were rapidly uptaken and reached the lysosomes in cellular models of Fabry disease, restoring lysosomal functionality much more efficiently than the recombinant enzyme in clinical use. In vivo, EVs were well tolerated and distributed among all main organs, including the brain. DiR-labelled EVs were localized in brain parenchyma 1 h after intra-arterial (internal carotid artery) or intravenous (tail vein) administrations. Moreover, a single intravenous administration of EV-GLA was able to reduce globotriaosylceramide (Gb3) substrate levels in clinically relevant tissues, such kidneys and brain. Overall, our results demonstrate that EVs from cells overexpressing lysosomal enzymes act as natural protein delivery systems, improving the activity and the efficacy of the recombinant proteins and facilitating their access to organs neglected by conventional enzyme replacement therapies.

JTD Keywords: alpha?galactosidase a, alpha‐galactosidase a, drug delivery, enzyme replacement therapy, fabry disease, lysosomal storage disorders, n-sulfoglucosamine sulfohydrolase, n?sulfoglucosamine sulfohydrolase, n‐sulfoglucosamine sulfohydrolase, sanfilippo syndrome, Alpha-galactosidase a, Drug delivery, Enzyme replacement therapy, Fabry disease, Lysosomal storage disorders, N-sulfoglucosamine sulfohydrolase, Sanfilippo syndrome


Ruano, G., Díaz, A., Tononi, J., Torras, J., Puiggalí, J., Alemán, C., (2020). Biohydrogel from unsaturated polyesteramide: Synthesis, properties and utilization as electrolytic medium for electrochemical supercapacitors Polymer Testing 82, 106300

The utilization of hydrogels derived from biopolymers as solid electrolyte (SE) of electrochemical supercapacitors (ESCs) is a topic of increasing interest because of their promising applications in biomedicine (e.g. for energy storage in autonomous implantable devices). In this work an unsaturated polyesteramide that contains phenylalanine, butenediol and fumarate as building blocks has been photo-crosslinked to obtain a hydrogel (UPEA-h). The structure of UPEA-h, which is characterized by a network of open interconnected pores surrounded by regions with compact morphology, favors ion transport, while the biodegradability and biocompatibility conferred by the α-amino acid unit and the ester group are appropriated for its usage in the biomedical field. Voltammetric and galvanostatic assays have been conducted to evaluate the behavior of UPEA-h when used as SE in ESCs with poly(3,4-ethylenedioxythiophene) (PEDOT) electrodes. Hence, PEDOT/UPEA-h devices displayed supercapacitor response of up 179 F/g and capacitance retention higher than 90%. Moreover, the long-term stability, leakage-current, and self-discharging response of PEDOT/UPEA-h ESCs reflect the great potential of UPEA-h as ion-conductive electrolyte. Indeed, the performance of PEDOT/UPEA-h is higher than found in analogous devices constructed using other biohydrogels as SE (e.g. κ-carrageenan, poly-γ-glutamic acid and cellulose hydrogels).

JTD Keywords: Energy storage, Hydrogel electronics, Ion conductivity, Photo-crosslinking, Wearable electronics


Saborío, M. G., Svelic, P., Casanovas, J., Ruano, G., Pérez-Madrigal, M. M., Franco, L., Torras, J., Estrany, F., Alemán, C., (2019). Hydrogels for flexible and compressible free standing cellulose supercapacitors European Polymer Journal 118, 347-357

Cellulose-based supercapacitors display important advantages in comparison with devices fabricated with other materials, regarding environmental friendliness, flexibility, cost and versatility. Recent progress in the field has been mainly focused on the utilization of cellulose fibres as: structural mechanical reinforcement of electrodes; precursors of electrically active carbon-based materials; or primary electrolytes that act as reservoirs of secondary electrolytes. In this work, a flexible, lightweight, robust, portable and manageable all-carboxymethyl cellulose symmetric supercapacitor has been obtained by assembling two electrodes based on carboxymethyl cellulose hydrogels to a solid electrolytic medium formulated with the same material. Hydrogels, which were made by cross-linking carboxymethyl cellulose paste with citric acid in water, rendered not only effective solid electrolytic media by simply loading NaCl but also electroactive electrodes. For the latter, conducting polymer microparticles, which were loaded into the hydrogel network during the physical cross-linking step, were appropriately connected through the in situ anodic polymerization of a similar conducting polymer in aqueous medium, thus creating conduction paths. The performance of the assembled supercapacitors has been proved by cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy. This design opens a new window for the green and mass production of flexible cellulose-based supercapacitors.

JTD Keywords: Conducting polymer, Energy storage, Flexible electrodes, In situ polymerization, Wearable electronics


Enshaei, H., Molina, B. G., del Valle, L. J., Estrany, F., Arnan, C., Puiggalí, J., Saperas, N., Alemán, C., (2019). Scaffolds for sustained release of ambroxol hydrochloride, a pharmacological chaperone that increases the activity of misfolded β-glucocerebrosidase. Macromolecular Bioscience 19, (8), 1900130

Ambroxol is a pharmacological chaperone (PC) for Gaucher disease that increases lysosomal activity of misfolded β-glucocerebrosidase (GCase) while displaying a safe toxicological profile. In this work, different poly(ε-caprolactone) (PCL)-based systems are developed to regulate the sustained release of small polar drugs in physiological environments. For this purpose, ambroxol is selected as test case since the encapsulation and release of PCs using polymeric scaffolds have not been explored yet. More specifically, ambroxol is successfully loaded in electrospun PCL microfibers, which are subsequently coated with additional PCL layers using dip-coating or spin-coating. The time needed to achieve 80% release of loaded ambroxol increases from ≈15 min for uncoated fibrous scaffolds to 3 days and 1 week for dip-coated and spin-coated systems, respectively. Furthermore, it is proven that the released drug maintains its bioactivity, protecting GCase against induced thermal denaturation.

JTD Keywords: Electrospinning, Gaucher's disease, Lysosomal storage disorders, Misfolding diseases, Poly(ε-caprolactone), Polyester, Release regulation


Perera, A., Pardo, A., Barrettino, D., Hierlermann, A., Marco, S., (2010). Evaluation of fish spoilage by means of a single metal oxide sensor under temperature modulation Sensors and Actuators B: Chemical 146, (2), 477-482

In this paper the feasibility of using metal oxide gas sensor technology for evaluating spoilage process for sea bream (Sparus aurata) is explored. It is shown that a single sensor under temperature modulation is able to find a correlation with the fish spoilage process. Results are obtained in real frigorific storage conditions: that is, at low measurement temperatures with variations of relative humidity.

JTD Keywords: Gas sensors, Electronic nose, Spoilage process, Temperature modulation, Bream sparus-aurata, Electronic nose, Freshness, Quality, Sardines, Storage


Tarzan-Lorente, M., Gutierrez-Galvez, A., Martinez, D., Marco, S., (2010). A biologically inspired associative memory for artificial olfaction Practica 2010 International Joint Conference on Neural Networks (IJCNN 2010) , IEEE, Piscataway, NJ, USA (Barcelona, Spain) , 6 pp.

In this paper, we propose a biologically inspired architecture for a Hopfield-like associative memory applied to artificial olfaction. The proposed algorithm captures the projection between two neural layers of the insect olfactory system (Antennal Lobe and Mushroom Body) with a kernel based projection. We have tested its classification performance as a function of the size of the training set and the time elapsed since training and compared it with that obtained with a Support Vector Machine.

JTD Keywords: Biocomputing, Chemioception, Content-addressable storage, Hopfield neural nets, Support vector machines


Fonollosa, J., Halford, B., Fonseca, L., Santander, J., Udina, S., Moreno, M., Hildenbrand, J., Wöllenstein, J., Marco, S., (2009). Ethylene optical spectrometer for apple ripening monitoring in controlled atmosphere store-houses Sensors and Actuators B: Chemical 136, (2), 546-554

In today's store-houses the ripening of fruit is controlled by managing the ethylene concentration in the ambient atmosphere. Precise and continuous ethylene monitoring is very advantageous since low ethylene concentrations are produced by the fruit itself and are indicative of its ripeness, and on other occasions, ethylene is externally added when ripeness or degreening of the product must be promoted. In this work, a multichannel mid-infrared spectrometer for ethylene measurement is built and characterized. The instrument contains additional channels to reject potential cross-interferences like ammonia and ethanol. Additionally, these channels are useful for monitoring a potential malfunction of the cooling system and possible fouling of the fruit, respectively. The complete spectrometer contains a silicon-based macroporous infrared (IR) emitter, a miniaturized long path cell (white cell), a four-channel detector module, low-noise analog amplification and filtering, and a microcontroller-based lock-in amplifier. The new inner architecture of the detector module features a fourfold thermopile array with narrow band optical filters attached by flip-chip technology, and a Fresnel lens array attached on the lid of the package. Laboratory tests show that the system is able to distinguish between ammonia and ethylene, featuring a detection limit of 30 ppm and 160 ppm (95% confidence) for ethylene and ammonia, respectively. Field tests show that the spectrometer is suitable as an ethylene alarm to detect fruit ripening and prevent fruit to decline into senescence. Simulation results show that system selectivity could be improved by setting ammonia channel to another absorption wavelength.

JTD Keywords: IR spectrometer, Ethylene, Fruit storage, Fresnel lens, White cell, Lock-in amplifier