by Keyword: Surface functionalization

By year:[ 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Hoyos-Nogués, M., Velasco, F., Ginebra, M. P., Manero, J. M., Gil, F. J., Mas-Moruno, C., (2017). Regenerating bone via multifunctional coatings: The blending of cell integration and bacterial inhibition properties on the surface of biomaterials ACS Applied Materials and Interfaces 9, (26), 21618-21630

In dentistry and orthopedics, it is well accepted that implant fixation is a major goal. However, an emerging concern is bacterial infection. Infection of metallic implants can be catastrophic and significantly reduce patient quality of life. Accordingly, in this work, we focus on multifunctional coatings to simultaneously address and mitigate both these problems. We have developed a tailor-made peptide-based chemical platform that integrates the well-known RGD cell adhesive sequence and the lactoferrin-derived LF1-11 antimicrobial peptide. The platform was covalently grafted on titanium via silanization and the functionalization process characterized by contact angle, XPS, and QCM-D. The presence of the platform statistically improved the adhesion, proliferation and mineralization of osteoblast-like cells compared to control surfaces. At the same time, colonization by representative bacterial strains was significantly reduced on the surfaces. Furthermore, the biological potency of the multifunctional platform was verified in a co-culture in vitro model. Our findings demonstrate that this multifunctional approach can be useful to functionalize biomaterials to both improve cell integration and reduce the risk of bacterial infection.

Keywords: Antimicrobial peptides, Cell adhesive peptides, Multifunctionality, Osseointegration, Surface functionalization

Castellanos, M. I., Mas-Moruno, C., Grau, A., Serra-Picamal, X., Trepat, X., Albericio, F., Joner, M., Gil, F. J., Ginebra, M. P., Manero, J. M., Pegueroles, M., (2017). Functionalization of CoCr surfaces with cell adhesive peptides to promote HUVECs adhesion and proliferation Applied Surface Science 393, 82-92

Biomimetic surface modification with peptides that have specific cell-binding moieties is a promising approach to improve endothelialization of metal-based stents. In this study, we functionalized CoCr surfaces with RGDS, REDV, YIGSR peptides and their combinations to promote endothelial cells (ECs) adhesion and proliferation. An extensive characterization of the functionalized surfaces was performed by XPS analysis, surface charge and quartz crystal microbalance with dissipation monitoring (QCM-D), which demonstrated the successful immobilization of the peptides to the surface. Cell studies demonstrated that the covalent functionalization of CoCr surfaces with an equimolar combination of RGDS and YIGSR represents the most powerful strategy to enhance the early stages of ECs adhesion and proliferation, indicating a positive synergistic effect between the two peptide motifs. Although these peptide sequences slightly increased smooth muscle cells (SMCs) adhesion, these values were ten times lower than those observed for ECs. The combination of RGDS with the REDV sequence did not show synergistic effects in promoting the adhesion or proliferation of ECs. The strategy presented in this study holds great potential to overcome clinical limitations of current metal stents by enhancing their capacity to support surface endothelialization.

Keywords: Cell adhesive peptides, CoCr alloy, Endothelialization, HUVEC proliferation, SMCs adhesion, Surface functionalization

Comments are closed