DONATE

Publications

by Keyword: Synchronization

Kennedy, KE, Abenza, JF, Rossetti, L, Trepat, X, Villoslada, P, Garcia-Ojalvo, J, (2024). Parametric modeling of mechanical effects on circadian oscillators Chaos 34, 013135

Circadian rhythms are archetypal examples of nonlinear oscillations. While these oscillations are usually attributed to circuits of biochemical interactions among clock genes and proteins, recent experimental studies reveal that they are also affected by the cell's mechanical environment. Here, we extend a standard biochemical model of circadian rhythmicity to include mechanical effects in a parametric manner. Using experimental observations to constrain the model, we suggest specific ways in which the mechanical signal might affect the clock. Additionally, a bifurcation analysis of the system predicts that these mechanical signals need to be within an optimal range for circadian oscillations to occur.

JTD Keywords: Circadian rhythm, Clocks, Coherence, Synchronization


Andrzejak, RG, Espinoso, A, (2023). Chimera states in multiplex networks: Chameleon-like across-layer synchronization Chaos 33, 53112

Different across-layer synchronization types of chimera states in multilayer networks have been discovered recently. We investigate possible relations between them, for example, if the onset of some synchronization type implies the onset of some other type. For this purpose, we use a two-layer network with multiplex inter-layer coupling. Each layer consists of a ring of non-locally coupled phase oscillators. While oscillators in each layer are identical, the layers are made non-identical by introducing mismatches in the oscillators' mean frequencies and phase lag parameters of the intra-layer coupling. We use different metrics to quantify the degree of various across-layer synchronization types. These include phase-locking between individual interacting oscillators, amplitude and phase synchronization between the order parameters of each layer, generalized synchronization between the driver and response layer, and the alignment of the incoherent oscillator groups' position on the two rings. For positive phase lag parameter mismatches, we get a cascaded onset of synchronization upon a gradual increase of the inter-layer coupling strength. For example, the two order parameters show phase synchronization before any of the interacting oscillator pairs does. For negative mismatches, most synchronization types have their onset in a narrow range of the coupling strength. Weaker couplings can destabilize chimera states in the response layer toward an almost fully coherent or fully incoherent motion. Finally, in the absence of a phase lag mismatch, sufficient coupling turns the response dynamics into a replica of the driver dynamics with the phases of all oscillators shifted by a constant lag.© 2023 Author(s). Published under an exclusive license by AIP Publishing.

JTD Keywords: chaos, Generalized synchronization


Zhang, KX, Klingner, A, Le Gars, Y, Misra, S, Magdanz, V, Khalil, ISM, (2023). Locomotion of bovine spermatozoa during the transition from individual cells to bundles Proceedings Of The National Academy Of Sciences Of The United States Of America 120, e2211911120

Various locomotion strategies employed by microorganisms are observed in complex biological environments. Spermatozoa assemble into bundles to improve their swimming efficiency compared to individual cells. However, the dynamic mechanisms for the formation of sperm bundles have not been fully characterized. In this study, we numerically and experimentally investigate the locomotion of spermatozoa during the transition from individual cells to bundles of two cells. Three consecutive dynamic behaviors are found across the course of the transition: hydrodynamic attraction/repulsion, alignment, and synchronization. The hydrodynamic attraction/repulsion depends on the relative orientation and distance between spermatozoa as well as their flagellar wave patterns and phase shift. Once the heads are attached, we find a stable equilibrium of the rotational hydrodynamics resulting in the alignment of the heads. The synchronization results from the combined influence of hydrodynamic and mechanical cell-to-cell interactions. Additionally, we find that the flagellar beat is regulated by the interactions during the bundle formation, whereby spermatozoa can synchronize their beats to enhance their swimming velocity.

JTD Keywords: behavior, cilia, collective locomotion, collective motion, competition, flagellar propulsion, hydrodynamics, motility, propulsion, sperm cooperation, tracking, Collective locomotion, Flagellar propulsion, Flagellar synchronization, Spermatozoa bundle


Espinoso, A, Andrzejak, RG, (2022). Phase irregularity: A conceptually simple and efficient approach to characterize electroencephalographic recordings from epilepsy patients Physical Review e 105, 34212

The severe neurological disorder epilepsy affects almost 1% of the world population. For patients who suffer from pharmacoresistant focal-onset epilepsy, electroencephalographic (EEG) recordings are essential for the localization of the brain area where seizures start. Apart from the visual inspection of the recordings, quantitative EEG signal analysis techniques proved to be useful for this purpose. Among other features, regularity versus irregularity and phase coherence versus phase independence allowed characterizing brain dynamics from the measured EEG signals. Can phase irregularities also characterize brain dynamics? To address this question, we use the univariate coefficient of phase velocity variation, defined as the ratio of phase velocity standard deviation and the mean phase velocity. Beyond that, as a bivariate measure we use the classical mean phase coherence to quantify the degree of phase locking. All phase-based measures are combined with surrogates to test null hypotheses about the dynamics underlying the signals. In the first part of our analysis, we use the Rössler model system to study our approach under controlled conditions. In the second part, we use the Bern-Barcelona EEG database which consists of focal and nonfocal signals extracted from seizure-free recordings. Focal signals are recorded from brain areas where the first seizure EEG signal changes can be detected, and nonfocal signals are recorded from areas that are not involved in the seizure at its onset. Our results show that focal signals have less phase variability and more phase coherence than nonfocal signals. Once combined with surrogates, the mean phase velocity proved to have the highest discriminative power between focal and nonfocal signals. In conclusion, conceptually simple and easy to compute phase-based measures can help to detect features induced by epilepsy from EEG signals. This holds not only for the classical mean phase coherence but even more so for univariate measures of phase irregularity. © 2022 American Physical Society.

JTD Keywords: brain, entropy, epileptogenic networks, functional connectivity, hilbert transform, seizure onset, surrogate data, synchronization, time-series, Biomedical signal processing, Brain areas, Brain dynamics, Dynamics, Electroencephalographic signals, Electroencephalography, Electrophysiology, Intracranial eeg signals, Localisation, Neurological disorders, Neurology, Phase based, Phase coherence, Signal detection, Simple++, Univariate, Velocity, World population


Schulz, S., Legorburu Cladera, B., Giraldo, B., Bolz, M., Bar, K. J., Voss, A., (2017). Neuronal desynchronization as marker of an impaired brain network Engineering in Medicine and Biology Society (EMBC) 39th Annual International Conference of the IEEE , IEEE (Seogwipo, South Korea) , 2251-2254

Synchronization is a central key feature of neural information processing and communication between different brain areas. Disturbance of oscillatory brain rhythms and decreased synchronization have been associated with different disorders including schizophrenia. The aim of this study was to investigate whether synchronization (in relaxed conditions with no stimuli) between different brain areas within the delta, theta, alpha (alpha1, alpha2), beta (beta1, beta2), and gamma bands is altered in patients with a neurological disorder in order to generate significant cortical enhancements. To achieve this, we investigated schizophrenic patients (SZO; N=17, 37.5±10.4 years, 15 males) and compared them to healthy subjects (CON; N=21, 36.7±13.4 years, 15 males) applying the phase locking value (PLV). We found significant differences between SZO and CON in different brain areas of the theta, alpha1, beta2 and gamma bands. These areas are related to the central and parietal lobes for the theta band, the parietal lobe for the alpha1, the parietal and frontal for the beta2 and the frontal-central for the gamma band. The gamma band revealed the most significant differences between CON and SZO. PLV were 61.7% higher on average in SZO in most of the clusters when compared to CON. The related brain areas are directly related to cognition skills which are proved to be impaired in SZO. The results of this study suggest that synchronization in SZO is also altered when the patients were not asked to perform a task that requires their cognitive skills (i.e., no stimuli are applied - in contrast to other findings).

JTD Keywords: Synchronization, Electroencephalography, Electrodes, Brain, Time series analysis, Oscillators, Frequency synchronization


Solà-Soler, J., Giraldo, B. F., Fiz, J. A., Jané, R., (2016). Study of phase estimation methods to analyse cardiorespiratory synchronization in OSA patients Engineering in Medicine and Biology Society (EMBC) 38th Annual International Conference of the IEEE , IEEE (Orlando, USA) , 4280-4283

Obstructive Sleep Apnea (OSA) is a sleep disorder highly prevalent in the general population. Cardiorespiratory Phase Synchronization (CRPS) is a form of non-linear interaction between respiratory and cardiovascular systems that was found to be reduced in severe OSA patients. The Hilbert Transform (HT) method was the recommended choice for estimating the respiratory phase in CRPS studies. But we have noticed that HT provides a phase that is aligned to the transition between the exhalation and the inhalation parts of different breathing cycles, instead of being aligned to the breathing onsets. In this work we proposed a Realigned HT phase estimation method (RHT) and we compared it to the conventional HT and to the Linear Phase (LP) approximation for estimating CRPS in a database of 28 patients with different OSA severity levels. RHT provided similar synchronization percentages (%Sync) as HT, and it enhanced the significant differences in %Sync between mild and severe OSA patients. %Sync showed the highest negative correlation with the Apnea-Hypopnea Index (AHI) when using RHT (rAHI=-0.692, p<;0.001), which only had an 10% extra computational cost. On the other hand, LP method significantly overestimated %Sync especially in the more severe patients, because it was unable to track the phase non-linearities that can be observed during sleep disordered breathing. Therefore, the newly proposed RHT can be the preferred alternative over the conventional HT or the LP approximation for estimating CRPS in OSA patients.

JTD Keywords: Correlation, Databases, Electrocardiography, Phase estimation, Sleep apnea, Synchronization, Transforms


Sola-Soler, J., Giraldo, B. F., Fiz, J. A., Jané, R., (2015). Cardiorespiratory Phase Synchronization in OSA subjects during wake and sleep states Engineering in Medicine and Biology Society (EMBC) 37th Annual International Conference of the IEEE , IEEE (Milan, Italy) , 7708-7711

Cardiorespiratory Phase Synchronization (CRPS) is a manifestation of coupling between cardiac and respiratory systems complementary to Respiratory Sinus Arrhythmia. In this work, we investigated CRPS during wake and sleep stages in Polysomnographic (PSG) recordings of 30 subjects suspected from Obstructive Sleep Apnea (OSA). The population was classified into three severity groups according to the Apnea Hypopnea Index (AHI): G1 (AHI<;15), G2 (15<;=AHI<;30) and G3 (AHI>30). The synchrogram between single lead ECG and respiratory abdominal band signals from PSG was computed with the Hilbert transform technique. The different phase locking ratios (PLR) m:n were monitored throughout the night. Ratio 4:1 was the most frequent and it became more dominant as OSA severity increased. CRPS was characterized by the percentage of synchronized time (%Sync) and the average duration of synchronized epochs (AvDurSync) using three different thresholds. Globally, we observed that %Sync significantly decreased and AvDurSync slightly increased with OSA severity. A high synchronization threshold enhanced these population differences. %Sync was significantly higher in NREM than in REM sleep in G2 and G3 groups. Population differences observed during sleep did not translate to the initial wake state. Reduced CRPS could be an early marker of OSA severity during sleep, but further studies are needed to determine whether CRPS is also present during wakefulness.

JTD Keywords: Band-pass filters, Electrocardiography, Heart beat, Sleep apnea, Sociology, Statistics, Synchronization


Solà, J., Fiz, J. A., Torres, A., Jané, R., (2014). Identification of Obstructive Sleep Apnea patients from tracheal breath sound analysis during wakefulness in polysomnographic studies Engineering in Medicine and Biology Society (EMBC) 36th Annual International Conference of the IEEE , IEEE (Chicago, USA) , 4232-4235

Obstructive Sleep Apnea (OSA) is currently diagnosed by a full nocturnal polysomnography (PSG), a very expensive and time-consuming method. In previous studies we were able to distinguish patients with OSA through formant frequencies of breath sound during sleep. In this study we aimed at identifying OSA patients from breath sound analysis during wakefulness. The respiratory sound was acquired by a tracheal microphone simultaneously to PSG recordings. We selected several cycles of consecutive inspiration and exhalation episodes in 10 mild-moderate (AHI<;30) and 13 severe (AHI>=30) OSA patients during their wake state before getting asleep. Each episode's formant frequencies were estimated by linear predictive coding. We studied several formant features, as well as their variability, in consecutive inspiration and exhalation episodes. In most subjects formant frequencies were similar during inspiration and exhalation. Formant features in some specific frequency band were significantly different in mild OSA as compared to severe OSA patients, and showed a decreasing correlation with OSA severity. These formant characteristics, in combination with some anthropometric measures, allowed the classification of OSA subjects between mild-moderate and severe groups with sensitivity (specificity) up to 88.9% (84.6%) and accuracy up to 86.4%. In conclusion, the information provided by formant frequencies of tracheal breath sound recorded during wakefulness may allow identifying subjects with severe OSA.

JTD Keywords: Correlation, Databases, Sensitivity, Sleep apnea, Speech, Synchronization


Antelis, J.M., Montesano, L., Giralt, X., Casals, A., Minguez, J., (2012). Detection of movements with attention or distraction to the motor task during robot-assisted passive movements of the upper limb Engineering in Medicine and Biology Society (EMBC) 34th Annual International Conference of the IEEE , IEEE (San Diego, USA) , 6410-6413

Robot-assisted rehabilitation therapies usually focus on physical aspects rather than on cognitive factors. However, cognitive aspects such as attention, motivation, and engagement play a critical role in motor learning and thus influence the long-term success of rehabilitation programs. This paper studies motor-related EEG activity during the execution of robot-assisted passive movements of the upper limb, while participants either: i) focused attention exclusively on the task; or ii) simultaneously performed another task. Six healthy subjects participated in the study and results showed lower desynchronization during passive movements with another task simultaneously being carried out (compared to passive movements with exclusive attention on the task). In addition, it was proved the feasibility to distinguish between the two conditions.

JTD Keywords: Electrodes, Electroencephalography, Induction motors, Medical treatment, Robot sensing systems, Time frequency analysis, Biomechanics, Cognition, Electroencephalography, Medical robotics, Medical signal detection, Medical signal processing, Patient rehabilitation, Attention, Cognitive aspects, Desynchronization, Engagement, Motivation, Motor learning, Motor task, Motor-related EEG activity, Physical aspects, Robot-assisted passive movement detection, Robot-assisted rehabilitation therapies, Upper limb