Staff member

DongPyo Kim

Visiting Researcher
Smart Nano-Bio-Devices
+34 934 020 515
Staff member publications

Katuri, J., Seo, K. D., Kim, D. S., Sánchez, S., (2016). Artificial micro-swimmers in simulated natural environments Lab on a Chip 16, (7), 1101-1105

Microswimmers, such as bacteria, are known to show different behaviours depending on their local environment. They identify spatial chemical gradients to find nutrient rich areas (chemotaxis) and interact with shear flows to accumulate in high shear regions. Recently, artificial microswimmers have been developed which mimic their natural counterparts in many ways. One of the exciting topics in this field is to study these artificial motors in several natural settings like the ones bacteria interact with. In this Focus article, we summarize recent observations of artificial swimmers in chemical gradients, shear flows and other interesting natural environments simulated in the lab using microfluidics and nanotechnology.

Seo, K. D., Kim, D. S., Sánchez, S., (2015). Fabrication and applications of complex-shaped microparticles via microfluidics Lab on a Chip 15, (18), 3622-3626

Complex-shaped microparticles (MPs) have attracted extensive interest in a myriad of scientific and engineering fields in recent years for their distinct morphology and capability in combining different functions within a single particle. Microfluidic techniques offer an intriguing method for fabricating MPs with excellent monodispersity and complex morphology in parallel while controlling their number and size precisely and independently. To date, there are two notable microfluidics approaches for the synthesis of complex-shaped MPs, namely droplet based, and flow-lithography based microfluidics approaches. It is undoubted that the application of complex-shaped MPs via microfluidic fabrication will hold great promise in a variety of fields including microfabrication, analytical chemistry and biomedicine.

Seo, K. D., Kwak, B. K., Sánchez, S., Kim, D. S., (2015). Microfluidic-assisted fabrication of flexible and location traceable organo-motor IEEE Transactions on Nanobioscience 14, (3), 298-304

In this paper, we fabricate a flexible and location traceable micromotor, called organo-motor, assisted by microfluidic devices and with high throughput. The organo-motors are composed of organic hydrogel material, poly (ethylene glycol) diacrylate (PEGDA), which can provide the flexibility of their structure. For spatial and temporal traceability of the organo-motors under magnetic resonance imaging (MRI), superparamagnetic iron oxide nanoparticles (SPION; Fe3O4) were incorporated into the PEGDA microhydrogels. Furthermore, a thin layer of platinum (Pt) was deposited onto one side of the SPION-PEGDA microhydrogels providing geometrical asymmetry and catalytic propulsion in aqueous fluids containing hydrogen peroxide solution, H2O2. Furthermore, the motion of the organo-motor was controlled by a small external magnet enabled by the presence of SPION in the motor architecture.

Keywords: Flexible, Hydrogel, Magnetic resonance imaging, Microfluidics, Micromotor, Microparticle, Organo-motor, Poly (ethylene glycol) diacrylate, Self-propulsion, Superparamagnetic iron oxide nanoparticles

Comments are closed