Staff member


Agustín Gutiérrez Gálvez

Senior Researcher
Signal and Information Processing for Sensing Systems
agutierrez@ibecbarcelona.eu
+34 934 039 158
Staff member publications

Fonollosa, J., Fernández, L., Gutiérrez-Gálvez, A., Huerta, R., Marco, S., (2016). Calibration transfer and drift counteraction in chemical sensor arrays using Direct Standardization Sensors and Actuators B: Chemical 236, 1044-1053

Inherent variability of chemical sensors makes it necessary to calibrate chemical detection systems individually. This shortcoming has traditionally limited usability of systems based on metal oxide gas sensor arrays and prevented mass-production for some applications. Here, aiming at exploring calibration transfer between chemical sensor arrays, we exposed five twin 8-sensor detection units to different concentration levels of ethanol, ethylene, carbon monoxide, or methane. First, we built calibration models using data acquired with a master unit. Second, to explore the transferability of the calibration models, we used Direct Standardization to map the signals of a slave unit to the space of the master unit in calibration. In particular, we evaluated the transferability of the calibration models to other detection units, and within the same unit measuring days apart. Our results show that signals acquired with one unit can be successfully mapped to the space of a reference unit. Hence, calibration models trained with a master unit can be extended to slave units using a reduced number of transfer samples, diminishing thereby calibration costs. Similarly, signals of a sensing unit can be transformed to match sensor behavior in the past to mitigate drift effects. Therefore, the proposed methodology can reduce calibration costs in mass-production and delay recalibrations due to sensor aging. Acquired dataset is made publicly available.

Keywords: Calibration transfer, Chemical sensors, Direct Standardization, Electronic nose, MOX sensors, Public dataset


Fernandez, L., Guney, S., Gutierrez-Galvez, A., Marco, S., (2016). Calibration transfer in temperature modulated gas sensor arrays Sensors and Actuators B: Chemical 231, 276-284

Abstract Shifts in working temperature are an important issue that prevents the successful transfer of calibration models from one chemical instrument to another. This effect is of special relevance when working with gas sensor arrays modulated in temperature. In this paper, we study the use of multivariate techniques to transfer the calibration model from a temperature modulated gas sensor array to another when a global change of temperature occurs. To do so, we built 12 identical master sensor arrays composed of three different types of commercial Figaro sensors and acquired a dataset of sensor responses to three pure substances (ethanol, acetone and butanone) dosed at 7 concentrations. The master arrays are then shifted in temperature (from −50 to 50 °C, ΔT = 10 °C) and considered as slave arrays. Data correction is performed for an increasing number of transfer samples with 4 different calibration transfer techniques: Direct Standardization, Piece-wise Direct Standardization, Orthogonal Signal Correction and Generalized Least Squares Weighting. In order to evaluate the performance of the calibration transfer, we compare the Root Mean Square Error of Prediction (RMSEP) of master and slave arrays, for each instrument correction. Best results are obtained from Piece-wise Direct standardization, which exhibits the lower RMSEP values after correction for the smaller number of transfer samples.

Keywords: Calibration transfer, Gas sensor array, MOX, Temperature modulation


Fernandez, L., Marco, S., Gutierrez-Galvez, A., (2015). Robustness to sensor damage of a highly redundant gas sensor array Sensors and Actuators B: Chemical 218, 296-302

Abstract In this paper we study the role of redundant sensory information to prevent the performance degradation of a chemical sensor array for different distributions of sensor failures across sensor types. The large amount of sensing conditions with two different types of redundancy provided by our sensor array makes possible a comprehensive experimental study. Particularly, our sensor array is composed of 8 different types of commercial MOX sensors modulated in temperature with two redundancy levels: (1) 12 replicates of each sensor type for a total of 96 sensors and (2) measurements using 16 load resistors per sensors for a total of 1536 redundant measures per second. We perform two experiments to determine the performance degradation of the array with increasing number of damaged sensors in two different scenarios of sensor faults distributions across sensor types. In the first experiment, we characterize the diversity and redundancy of the array for increasing number of damaged sensors. To measure diversity and redundancy, we proposed a functional definition based on clustering of sensor features. The second experiment is devoted to determine the performance degradation of the array for the effect of faulty sensors. To this end, the system is trained to separate ethanol, acetone and butanone at different concentrations using a PCA–LDA model. Test set samples are corrupted by means of three different simulated types of faults. To evaluate the performance of the array we used the Fisher score as a measure of odour separability. Our results show that to exploit to the utmost the redundancy of the sensor array faulty sensory units have to be distributed uniformly across the different sensor types.

Keywords: Gas sensor arrays, Sensor redundancy, Sensor diversity, Sensor faults aging, Sensor damage, MOX sensors, Large sensor arrays


Polese, Davide, Martinelli, Eugenio, Marco, Santiago, Di Natale, Corrado, Gutierrez-Galvez, Agustin, (2014). Understanding odor information segregation in the olfactory bulb by means of mitral and tufted cells PLoS ONE 9, (10), e109716

Odor identification is one of the main tasks of the olfactory system. It is performed almost independently from the concentration of the odor providing a robust recognition. This capacity to ignore concentration information does not preclude the olfactory system from estimating concentration itself. Significant experimental evidence has indicated that the olfactory system is able to infer simultaneously odor identity and intensity. However, it is still unclear at what level or levels of the olfactory pathway this segregation of information occurs. In this work, we study whether this odor information segregation is performed at the input stage of the olfactory bulb: the glomerular layer. To this end, we built a detailed neural model of the glomerular layer based on its known anatomical connections and conducted two simulated odor experiments. In the first experiment, the model was exposed to an odor stimulus dataset composed of six different odorants, each one dosed at six different concentrations. In the second experiment, we conducted an odor morphing experiment where a sequence of binary mixtures going from one odor to another through intermediate mixtures was presented to the model. The results of the experiments were visualized using principal components analysis and analyzed with hierarchical clustering to unveil the structure of the high-dimensional output space. Additionally, Fisher's discriminant ratio and Pearson's correlation coefficient were used to quantify odor identity and odor concentration information respectively. Our results showed that the architecture of the glomerular layer was able to mediate the segregation of odor information obtaining output spiking sequences of the principal neurons, namely the mitral and external tufted cells, strongly correlated with odor identity and concentration, respectively. An important conclusion is also that the morphological difference between the principal neurons is not key to achieve odor information segregation.


Marco, S., Gutiérrez-Gálvez, A., Lansner, A., Martinez, D., Rospars, J. P., Beccherelli, R., Perera, A., Pearce, T. C., Verschure, P. F. M. J., Persaud, K., (2014). A biomimetic approach to machine olfaction, featuring a very large-scale chemical sensor array and embedded neuro-bio-inspired computation Microsystem Technologies 20, (4-5), 729-742

Biological olfaction outperforms chemical instrumentation in specificity, response time, detection limit, coding capacity, time stability, robustness, size, power consumption, and portability. This biological function provides outstanding performance due, in a large extent, to the unique architecture of the olfactory pathway, which combines a high degree of redundancy and efficient combinatorial coding, with unmatched chemical information processing mechanisms. The last decade has seen important advances in the understanding of the computational primitives underlying the functioning of the olfactory system. The EU-funded Project NEUROCHEM (Bio-ICT-FET- 216916) developed novel computing paradigms and biologically motivated artefacts for chemical sensing, taking its inspiration from the biological olfactory pathway. To demonstrate this approach, a biomimetic demonstrator has been built that features a very large-scale sensor array (65,536 elements) using conducting polymer technology which mimics the olfactory receptor neuron layer. It implements derived computational neuroscience algorithms in an embedded system that interfaces the chemical sensors and processes their signals in real-time. This embedded system integrates abstracted computational models of the main anatomic building blocks in the olfactory pathway: the olfactory bulb, and olfactory cortex in vertebrates (respectively, antennal lobe and mushroom bodies in the insect). For implementation in the embedded processor, an abstraction phase has been carried out in which their processing capabilities are captured by algorithmic solutions implemented in software. Finally, the algorithmic models are tested in mixed chemical plumes with an odour robot having navigation capabilities.


Fernandez, L., Gutierrez-Galvez, A., Marco, S., (2014). Robustness to sensor damage of a highly redundant gas sensor array Procedia Engineering 28th European Conference on Solid-State Transducers (EUROSENSORS 2014) , Eurosensors (Brescia, Italy) 87, 851-854

Abstract In this paper we study the role of redundant sensory information to prevent the performance degradation of a chemical sensor array as the number of faulty sensors increases. The large amount of sensing conditions with two different types of redundancy provided by our sensor array makes possible a comprehensive experimental study. Particularly, our sensor array is composed of 8 different types of commercial MOX sensors modulated in temperature with two redundancy levels: 1) 12 replicates of each sensor type for a total of 96 sensors, and 2) measurements using 16 load resistors per sensors for a total of 1536 redundant measures per second. The system is trained to identify ethanol, acetone and butanone using a PCA-LDA model. Test set samples are corrupted by means of three different simulated types of faults. To evaluate the tolerance of the array against sensor failure, the Fisher Score is used as a figure of merit for the corrupted test set samples projected on the PCA-LDA model.

Keywords: Gas ensor arrays, sensor redundancy, MOX sensors, large sensor arrays.


Marco, S., Gutiérrez-Gálvez, A., Lansner, A., Martinez, D., Rospars, J. P., Beccherelli, R., Perera, A., Pearce, T., Vershure, P., Persaud, K., (2013). Biologically inspired large scale chemical sensor arrays and embedded data processing Proceedings of SPIE - The International Society for Optical Engineering Smart Sensors, Actuators, and MEMS VI , SPIE Digital Library (Grenoble, France) 8763, 1-15

Biological olfaction outperforms chemical instrumentation in specificity, response time, detection limit, coding capacity, time stability, robustness, size, power consumption, and portability. This biological function provides outstanding performance due, to a large extent, to the unique architecture of the olfactory pathway, which combines a high degree of redundancy, an efficient combinatorial coding along with unmatched chemical information processing mechanisms. The last decade has witnessed important advances in the understanding of the computational primitives underlying the functioning of the olfactory system. EU Funded Project NEUROCHEM (Bio-ICT-FET- 216916) has developed novel computing paradigms and biologically motivated artefacts for chemical sensing taking inspiration from the biological olfactory pathway. To demonstrate this approach, a biomimetic demonstrator has been built featuring a large scale sensor array (65K elements) in conducting polymer technology mimicking the olfactory receptor neuron layer, and abstracted biomimetic algorithms have been implemented in an embedded system that interfaces the chemical sensors. The embedded system integrates computational models of the main anatomic building blocks in the olfactory pathway: The olfactory bulb, and olfactory cortex in vertebrates (alternatively, antennal lobe and mushroom bodies in the insect). For implementation in the embedded processor an abstraction phase has been carried out in which their processing capabilities are captured by algorithmic solutions. Finally, the algorithmic models are tested with an odour robot with navigation capabilities in mixed chemical plumes.

Keywords: Antennal lobes, Artificial olfaction, Computational neuroscience, Olfactory bulbs, Plume tracking, Abstracting, Actuators, Algorithms, Biomimetic processes, Chemical sensors, Conducting polymers, Data processing, Flavors, Odors, Robots, Smart sensors, Embedded systems


Santano-Martínez, R., Leiva-González, R., Avazbeigi, M., Gutiérrez-Gálvez, A., Marco, S., (2013). Identification of molecular properties coding areas in rat's olfactory bulb by rank products Proceedings of the International Conference on Bio-Inspired Systems and Signal Processing BIOSIGNALS 2013 , SciTePress (Barcelona, Spain) , 383-387

Neural coding of chemical information is still under strong debate. It is clear that, in vertebrates, neural representation in the olfactory bulb is a key for understanding a putative odour code. To explore this code, in this work we have studied a public dataset of radio images of 2-Deoxyglucose uptake (2-DG) in the olfactory bulb of rats in response to diverse odorants using univariate pixel selection algorithms: rank-products and Mann-Whitney U (MWU) test. Initial results indicate that some chemical properties of odorants preferentially activate certain areas of the rat olfactory bulb. While non-parametric test (MWU) has difficulties to detect these regions, rank-product provides a higher power of detection.

Keywords: 2-Deoxyglucose uptake, Chemotopy, Feature selection, Odour coding, Olfaction, Olfactory bulb


Fernandez, L., Gutierrez-Galvez, A., Marco, S., (2013). Multi-way analysis of diversity and redundancy factors in large MOX gas sensor data Metal Oxide-based Sensors 14th International Meeting on Chemical Sensors - IMCS 2012 , AMA Science Portal (Nuremberg, Germany) P2.07, 1279-1280

We propose the use of multi-way methods to analyze the contribution of diversity and redundancy to odor identification and concentration estimation in a large chemical sensor array. We use a chemical sensing system based on a large array of metal oxide sensors (MOX) and inspired on the diversity and redundancy of the olfactory epithelium. In order to analyze the role of diversity (different sensor type and temperature modulation) and redundancy (replicates of sensors and different load resistors) in odor quantification and discrimination tasks, we have acquired two datasets and modeled the data using multi-way techniques.

Keywords: Artificial Olfaction, Large array, MOX gas sensor, Multi-way methods


Gutiérrez-Gálvez, A., Marco, S., (2013). Study of the coding efficiency of populations of olfactory receptor neurons and olfactory glomeruli Frontiers in Neuroengineering Series Neuromorphic Olfaction (ed. Persaud, K. , Marco, S., Gutiérrez-Gálvez, A.), CRC Press (London, UK) , 59-82

Persaud, K. , Marco, S., Gutiérrez-Gálvez, A., (2013). Neuromorphic Olfaction Frontiers in Neuroengineering Series Neuromorphic Olfaction , CRC Press (London, UK)

Fonollosa, Jordi, Gutierrez-Galvez, Agustin, Marco, Santiago, (2012). Quality coding by neural populations in the early olfactory pathway: Analysis using information theory and lessons for artificial olfactory systems PLoS ONE 7, (6), e37809

In this article, we analyze the ability of the early olfactory system to detect and discriminate different odors by means of information theory measurements applied to olfactory bulb activity images. We have studied the role that the diversity and number of receptor neuron types play in encoding chemical information. Our results show that the olfactory receptors of the biological system are low correlated and present good coverage of the input space. The coding capacity of ensembles of olfactory receptors with the same receptive range is maximized when the receptors cover half of the odor input space - a configuration that corresponds to receptors that are not particularly selective. However, the ensemble’s performance slightly increases when mixing uncorrelated receptors of different receptive ranges. Our results confirm that the low correlation between sensors could be more significant than the sensor selectivity for general purpose chemo-sensory systems, whether these are biological or biomimetic.


Falasconi, Matteo, Gutierrez-Galvez, Agustin, Leon, Michael, Johnson, Brett A., Marco, Santiago, (2012). Cluster analysis of rat olfactory bulb responses to diverse odorants Chemical Senses 37, (7), 639-653

In an effort to deepen our understanding of mammalian olfactory coding, we have used an objective method to analyze a large set of odorant-evoked activity maps collected systematically across the rat olfactory bulb to determine whether such an approach could identify specific glomerular regions that are activated by related odorants. To that end, we combined fuzzy c-means clustering methods with a novel validity approach based on cluster stability to evaluate the significance of the fuzzy partitions on a data set of glomerular layer responses to a large diverse group of odorants. Our results confirm the existence of glomerular response clusters to similar odorants. They further indicate a partial hierarchical chemotopic organization wherein larger glomerular regions can be subdivided into smaller areas that are rather specific in their responses to particular functional groups of odorants. These clusters bear many similarities to, as well as some differences from, response domains previously proposed for the glomerular layer of the bulb. These data also provide additional support for the concept of an identity code in the mammalian olfactory system.


Marco, S., Gutierrez-Galvez, A., (2012). Signal and data processing for machine olfaction and chemical sensing: A review IEEE Sensors Journal 12, (11), 3189-3214

Signal and data processing are essential elements in electronic noses as well as in most chemical sensing instruments. The multivariate responses obtained by chemical sensor arrays require signal and data processing to carry out the fundamental tasks of odor identification (classification), concentration estimation (regression), and grouping of similar odors (clustering). In the last decade, important advances have shown that proper processing can improve the robustness of the instruments against diverse perturbations, namely, environmental variables, background changes, drift, etc. This article reviews the advances made in recent years in signal and data processing for machine olfaction and chemical sensing.

Keywords: Chemical sensors, Electronic nose, Intelligent sensors, Measurement techniques, Sensor arrays, Sensor systems


Gutierrez-Galvez, Agustin, Fernandez, Luis, Marco, Santiago, (2011). Study of sensory diversity and redundancy to encode for chemical mixtures Olfaction and Electronic Nose: Proceedings of the 14th International Symposium on Olfaction and Electronic Nose AIP Conference Proceedings (ed. Perena Gouma, SUNY Stony Brook), AIP (New York City, USA) 1362, (1), 147-148

Inspired by sensory diversity and redundancy at the olfactory epithelium, we have built a large chemical sensor array based on commercial MOX sensors. Different sensor families along with temperature modulation accounts for sensory diversity, whereas sensors of the same family combined with different load resistors provide redundancy to the system. To study the encoding of odor mixtures, a data collection consisting on the response of the array to 3 binary mixtures of ethanol, acetone, and butanone with 18 different concentration ratios is obtained.

Keywords: Chemioception, Sensors, Data acquisition, Temperature measurement


Tarzan-Lorente, M., Gutierrez-Galvez, A., Martinez, D., Marco, S., (2010). A biologically inspired associative memory for artificial olfaction Practica 2010 International Joint Conference on Neural Networks (IJCNN 2010) , IEEE, Piscataway, NJ, USA (Barcelona, Spain) , 6 pp.

In this paper, we propose a biologically inspired architecture for a Hopfield-like associative memory applied to artificial olfaction. The proposed algorithm captures the projection between two neural layers of the insect olfactory system (Antennal Lobe and Mushroom Body) with a kernel based projection. We have tested its classification performance as a function of the size of the training set and the time elapsed since training and compared it with that obtained with a Support Vector Machine.

Keywords: Biocomputing, Chemioception, Content-addressable storage, Hopfield neural nets, Support vector machines


Fernandez, L., Gutierrez-Galvez, A., Marco, S., (2010). Gas sensor array system inspired on the sensory diversity and redundancy of the olfactory epithelium Procedia Engineering Eurosensor XXIV Conference (ed. Jakoby, B., Vellekoop, M.J.), Elsevier Science BV (Linz, Austria) 5, (0), 25-28

This paper presents a chemical sensing system that takes inspiration from the combination of sensory diversity and redundancy at the olfactory epithelium to enhance the chemical information obtained from the odorants. The system is based on commercial MOS sensors and achieves, first, diversity trough different types of MOS along with modulation of their temperatures, and second redundancy including 12 MOS sensors for each type (12×8) combined with a high-speed multiplexing system that allows connecting 16 load resistors with each and every one of the 96 sensors in about two seconds. Exposition of the system to ethanol, ammonia, and acetone at different concentrations shows how the system is able to capture a large amount of information of the identity and the concentration of the odorant.

Keywords: Gas sensor array, Biologically inspired system, Redundancy, Diversity, MOX sensors, Temperature modulation


Auffarth, B., Gutierrez-Galvez, A., Marco, S., (2010). Relevance and LOCI of odorant features in the rat olfactory bulb: Statistical methods for understanding olfactory codes in glomerular images BIOSIGNALS 2010 - Proceedings of the 3rd International Conference on Bio-inpsired Systems and Signal Processing, Proceedings 3rd International Conference on Bio-inspired Systems and Signal Processing, BIOSIGNALS 2010 (ed. Fred, A., Filipe, J., Gamboa, H.), Springer-Verlag (Valencia, Spain) , 37-44

The relationship between physicochemical properties of odor molecules and perceived odor quality is arguably one of the most important issues in olfaction and the rules governing this relationship remain unknown. Any given odor molecule will stimulate more than one type of receptor in the nose, perhaps hundreds, and this stimulation reflects itself in the neural code of the olfactory nervous system. We present a method to investigate neural coding at the glomerular level of the olfactory bulb, the first relay for olfactory processing in the brain. Our results give insights into localization of coding sites, relevance of odorant properties for information processing, and the size of coding zones.

Keywords: Classification, Glomeruli, Non-parametric statistics, Odorants, Olfactory bulb, Olfactory coding, Property-activity relationship


Marco, S., Gutierrez-Galvez, A., (2009). Recent developments in the application of biologically inspired computation to chemical sensing Olfaction Electronic Nose: Proceedings of the 13th International Symposium on Olfaction and Electronic Nose 13th International Symposium on Olfaction and the Electronic Nose (ed. Pardo, M., Sberveglieri, G.), Amer Inst Physics (Brescia, Italy) 1137, 151-154

Biological olfaction outperforms chemical instrumentation in specificity, response time, detection limit, coding capacity, time stability, robustness, size, power consumption, and portability. This biological function provides outstanding performance due, to a large extent, to the unique architecture of the olfactory pathway, which combines a high degree of redundancy, an efficient combinatorial coding along with unmatched chemical information processing mechanisms. The last decade has witnessed important advances in the understanding of the computational primitives underlying the functioning of the olfactory system. In this work, the state of the art concerning biologically inspired computation for chemical sensing will be reviewed. Instead of reviewing the whole body of computational neuroscience of olfaction, we restrict this review to the application of models to the processing of real chemical sensor data.

Keywords: Computational Intelligence, Chemical Sensors


Comments are closed