Staff member

Marina Uroz Marimon

PhD Student
Integrative Cell and Tissue Dynamics
+34 934 037 068
Staff member publications

Malinverno, C., Corallino, S., Giavazzi, F., Bergert, M., Li, Q., Leoni, M., Disanza, A., Frittoli, E., Oldani, A., Martini, E., Lendenmann, T., Deflorian, G., Beznoussenko, G. V., Poulikakos, D., Ong, K. H., Uroz, M., Trepat, X., Parazzoli, D., Maiuri, P., Yu, W., Ferrari, A., Cerbino, R., Scita, G., (2017). Endocytic reawakening of motility in jammed epithelia Nature Materials 16, 587–596

Dynamics of epithelial monolayers has recently been interpreted in terms of a jamming or rigidity transition. How cells control such phase transitions is, however, unknown. Here we show that RAB5A, a key endocytic protein, is sufficient to induce large-scale, coordinated motility over tens of cells, and ballistic motion in otherwise kinetically arrested monolayers. This is linked to increased traction forces and to the extension of cell protrusions, which align with local velocity. Molecularly, impairing endocytosis, macropinocytosis or increasing fluid efflux abrogates RAB5A-induced collective motility. A simple model based on mechanical junctional tension and an active cell reorientation mechanism for the velocity of self-propelled cells identifies regimes of monolayer dynamics that explain endocytic reawakening of locomotion in terms of a combination of large-scale directed migration and local unjamming. These changes in multicellular dynamics enable collectives to migrate under physical constraints and may be exploited by tumours for interstitial dissemination.

Vincent, Romaric, Bazellières, Elsa, Pérez-González, Carlos, Uroz, Marina, Serra-Picamal, Xavier, Trepat, Xavier, (2015). Active tensile modulus of an epithelial monolayer Physical Review Letters 115, (24), 248103

A general trait of cell monolayers is their ability to exert contractile stresses on their surroundings. The scaling laws that link such contractile stresses with the size and geometry of constituent cells remain largely unknown. In this Letter, we show that the active tension of an epithelial monolayer scales linearly with the size of the constituent cells, a surprisingly simple relationship. The slope of this relationship defines an active tensile modulus, which depends on the concentration of myosin and spans more than 2 orders of magnitude across cell types and molecular perturbations.

Brask, J. B., Singla-Buxarrais, G., Uroz, M., Vincent, R., Trepat, X., (2015). Compressed sensing traction force microscopy Acta Biomaterialia 26, 286-294

Adherent cells exert traction forces on their substrate, and these forces play important roles in biological functions such as mechanosensing, cell differentiation and cancer invasion. The method of choice to assess these active forces is traction force microscopy (TFM). Despite recent advances, TFM remains highly sensitive to measurement noise and exhibits limited spatial resolution. To improve the resolution and noise robustness of TFM, here we adapt techniques from compressed sensing (CS) to the reconstruction of the traction field from the substrate displacement field. CS enables the recovery of sparse signals at higher resolution from lower resolution data. Focal adhesions (FAs) of adherent cells are spatially sparse implying that traction fields are also sparse. Here we show, by simulation and by experiment, that the CS approach enables circumventing the Nyquist-Shannon sampling theorem to faithfully reconstruct the traction field at a higher resolution than that of the displacement field. This allows reaching state-of-the-art resolution using only a medium magnification objective. We also find that CS improves reconstruction quality in the presence of noise. Statement of Significance A great scientific advance of the past decade is the recognition that physical forces determine an increasing list of biological processes. Traction force microscopy which measures the forces that cells exert on their surroundings has seen significant recent improvements, however the technique remains sensitive to measurement noise and severely limited in spatial resolution. We exploit the fact that the force fields are sparse to boost the spatial resolution and noise robustness by applying ideas from compressed sensing. The novel method allows high resolution on a larger field of view. This may in turn allow better understanding of the cell forces at the multicellular level, which are known to be important in wound healing and cancer invasion.

Keywords: Compressed sensing, High resolution, Traction force microscopy

Comments are closed