Staff member

Roger Oria Fernandez

PhD Student
Cellular and Molecular Mechanobiology
+34 934 037 068
Staff member publications

Garreta, Elena, Oria, Roger, Tarantino, Carolina, Pla-Roca, Mateu, Prado, Patricia, Fernández-Avilés, Francisco, Campistol, Josep Maria, Samitier, Josep, Montserrat, Nuria, (2017). Tissue engineering by decellularization and 3D bioprinting Materials Today 20, (4), 166-178

Discarded human donor organs have been shown to provide decellularized extracellular matrix (dECM) scaffolds suitable for organ engineering. The quest for appropriate cell sources to satisfy the need of multiple cells types in order to fully repopulate human organ-derived dECM scaffolds has opened new venues for the use of human pluripotent stem cells (hPSCs) for recellularization. In addition, three-dimensional (3D) bioprinting techniques are advancing towards the fabrication of biomimetic cell-laden biomaterial constructs. Here, we review recent progress in decellularization/recellularization and 3D bioprinting technologies, aiming to fabricate autologous tissue grafts and organs with an impact in regenerative medicine.

González-Tarragó, V., Elosegui-Artola, A., Bazellières, E., Oria, R., Pérez-González, C., Roca-Cusachs, P., (2017). Binding of ZO-1 to Molecular Biology of the Cell 28, (14), 1847-1852

Fundamental processes in cell adhesion, motility, and rigidity adaptation are regulated by integrin-mediated adhesion to the extracellular matrix (ECM). The link between the ECM component fibronectin (fn) and integrin

Elosegui, Alberto, Oria, Roger, Chen, Yunfeng, Kosmalska, Anita, Perez-Gonzalez, Carlos, Castro, Natalia, Zhu, Cheng, Trepat, Xavier, Roca-Cusachs, Pere, (2016). Mechanical regulation of a molecular clutch defines force transmission and transduction in response to matrix rigidity Nature Cell Biology 18, (5), 540-548

Cell function depends on tissue rigidity, which cells probe by applying and transmitting forces to their extracellular matrix, and then transducing them into biochemical signals. Here we show that in response to matrix rigidity and density, force transmission and transduction are explained by the mechanical properties of the actin-talin-integrin-fibronectin clutch. We demonstrate that force transmission is regulated by a dynamic clutch mechanism, which unveils its fundamental biphasic force/rigidity relationship on talin depletion. Force transduction is triggered by talin unfolding above a stiffness threshold. Below this threshold, integrins unbind and release force before talin can unfold. Above the threshold, talin unfolds and binds to vinculin, leading to adhesion growth and YAP nuclear translocation. Matrix density, myosin contractility, integrin ligation and talin mechanical stability differently and nonlinearly regulate both force transmission and the transduction threshold. In all cases, coupling of talin unfolding dynamics to a theoretical clutch model quantitatively predicts cell response.

Garreta, E., de Oñate, L., Fernández-Santos, M. E., Oria, R., Tarantino, C., Climent, A. M., Marco, A., Samitier, M., Martínez, E., Valls-Margarit, M., Matesanz, R., Taylor, D. A., Fernández-Avilés, F., Izpisua Belmonte, J. C., Montserrat, N., (2016). Myocardial commitment from human pluripotent stem cells: Rapid production of human heart grafts Biomaterials 98, 64-78

Genome editing on human pluripotent stem cells (hPSCs) together with the development of protocols for organ decellularization opens the door to the generation of autologous bioartificial hearts. Here we sought to generate for the first time a fluorescent reporter human embryonic stem cell (hESC) line by means of Transcription activator-like effector nucleases (TALENs) to efficiently produce cardiomyocyte-like cells (CLCs) from hPSCs and repopulate decellularized human heart ventricles for heart engineering. In our hands, targeting myosin heavy chain locus (MYH6) with mCherry fluorescent reporter by TALEN technology in hESCs did not alter major pluripotent-related features, and allowed for the definition of a robust protocol for CLCs production also from human induced pluripotent stem cells (hiPSCs) in 14 days. hPSCs-derived CLCs (hPSCs-CLCs) were next used to recellularize acellular cardiac scaffolds. Electrophysiological responses encountered when hPSCs-CLCs were cultured on ventricular decellularized extracellular matrix (vdECM) correlated with significant increases in the levels of expression of different ion channels determinant for calcium homeostasis and heart contractile function. Overall, the approach described here allows for the rapid generation of human cardiac grafts from hPSCs, in a total of 24 days, providing a suitable platform for cardiac engineering and disease modeling in the human setting.

Keywords: Cardiac function, Extracellular matrix, Gene targeting, Pluripotent stem cells

Elosegui, A., Bazellières, E., Allen, M. D., Andreu, I., Oria, R., Sunyer, R., Gomm, J. J., Marshall, J. F., Jones, J. L., Trepat, X., Roca-Cusachs, P., (2014). Rigidity sensing and adaptation through regulation of integrin types Nature Materials 13, (6), 631-637

Tissue rigidity regulates processes in development, cancer and wound healing. However, how cells detect rigidity, and thereby modulate their behaviour, remains unknown. Here, we show that sensing and adaptation to matrix rigidity in breast myoepithelial cells is determined by the bond dynamics of different integrin types. Cell binding to fibronectin through either

Comments are closed