by Keyword: Mesenchymal stromal cells

By year:[ 2021 | 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Prat-Vidal, C., Rodríguez-Gómez, L., Aylagas, M., Nieto-Nicolau, N., Gastelurrutia, P., Agustí, E., Gálvez-Montón, C., Jorba, I., Teis, A., Monguió-Tortajada, M., Roura, S., Vives, J., Torrents-Zapata, S., Coca, M. I., Reales, L., Cámara-Rosell, M. L., Cediel, G., Coll, R., Farré, R., Navajas, D., Vilarrodona, A., García-López, J., Muñoz-Guijosa, C., Querol, S., Bayes-Genis, A., (2020). First-in-human PeriCord cardiac bioimplant: Scalability and GMP manufacturing of an allogeneic engineered tissue graft EBioMedicine 54, 102729

Background Small cardiac tissue engineering constructs show promise for limiting post-infarct sequelae in animal models. This study sought to scale-up a 2-cm2 preclinical construct into a human-size advanced therapy medicinal product (ATMP; PeriCord), and to test it in a first-in-human implantation. Methods The PeriCord is a clinical-size (12–16 cm2) decellularised pericardial matrix colonised with human viable Wharton's jelly-derived mesenchymal stromal cells (WJ-MSCs). WJ-MSCs expanded following good manufacturing practices (GMP) met safety and quality standards regarding the number of cumulative population doublings, genomic stability, and sterility. Human decellularised pericardial scaffolds were tested for DNA content, matrix stiffness, pore size, and absence of microbiological growth. Findings PeriCord implantation was surgically performed on a large non-revascularisable scar in the inferior wall of a 63-year-old male patient. Coronary artery bypass grafting was concomitantly performed in the non-infarcted area. At implantation, the 16-cm2 pericardial scaffold contained 12·5 × 106 viable WJ-MSCs (85·4% cell viability; <0·51 endotoxin units (EU)/mL). Intraoperative PeriCord delivery was expeditious, and secured with surgical glue. The post-operative course showed non-adverse reaction to the PeriCord, without requiring host immunosuppression. The three-month clinical follow-up was uneventful, and three-month cardiac magnetic resonance imaging showed ~9% reduction in scar mass in the treated area. Interpretation This preliminary report describes the development of a scalable clinical-size allogeneic PeriCord cardiac bioimplant, and its first-in-human implantation. Funding La Marató de TV3 Foundation, Government of Catalonia, Catalan Society of Cardiology, “La Caixa” Banking Foundation, Spanish Ministry of Science, Innovation and Universities, Institute of Health Carlos III, and the European Regional Development Fund.

Keywords: Advanced therapy medicinal product (ATMP), Biofabrication, Cardiac tissue engineering, Myocardial infarction, Scaffold, Wharton's jelly-derived mesenchymal stromal cells (WJ-MSCs)

Vila, M., García, A., Girotti, A., Alonso, M., Rodríguez-Cabello, J. C., González-Vázquez, A., Planell, J. A., Engel, E., Buján, J., Garcíaa-Honduvilla, N., Vallet-Regí, M., (2016). 3D silicon doped hydroxyapatite scaffolds decorated with Elastin-like Recombinamers for bone regenerative medicine Acta Biomaterialia 45, 349-356

The current study reports on the manufacturing by rapid prototyping technique of three-dimensional (3D) scaffolds based on silicon substituted hydroxyapatite with Elastin-like Recombinamers (ELRs) functionalized surfaces. Silicon doped hydroxyapatite (Si-HA), with Ca10(PO4)5.7(SiO4)0.3(OH)1.7h0.3 nominal formula, was surface functionalized with two different types of polymers designed by genetic engineering: ELR-RGD that contain cell attachment specific sequences and ELR-SNA15/RGD with both hydroxyapatite and cells domains that interact with the inorganic phase and with the cells, respectively. These hybrid materials were subjected to in vitro assays in order to clarify if the ELRs coating improved the well-known biocompatible and bone regeneration properties of calcium phosphates materials. The in vitro tests showed that there was a total and homogeneous colonization of the 3D scaffolds by Bone marrow Mesenchymal Stromal Cells (BMSCs). In addition, the BMSCs were viable and able to proliferate and differentiate into osteoblasts. Statement of Significance Bone tissue engineering is an area of increasing interest because its main applications are directly related to the rising life expectancy of the population, which promotes higher rates of several bone pathologies, so innovative strategies are needed for bone tissue regeneration therapies. Here we use the rapid prototyping technology to allow moulding ceramic 3D scaffolds and we use different bio-polymers for the functionalization of their surfaces in order to enhance the biological response. Combining the ceramic material (silicon doped hydroxyapatite, Si-HA) and the Elastin like Recombinamers (ELRs) polymers with the presence of the integrin-mediate adhesion domain alone or in combination with SNA15 peptide that possess high affinity for hydroxyapatite, provided an improved Bone marrow Mesenchymal Stromal Cells (BMSCs) differentiation into osteoblastic linkage.

Keywords: Bone marrow Mesenchymal Stromal Cells (BMSCs), Bone repair, Elastin-like Recombinamers (ELRs), Rapid prototyped 3D scaffolds, Silicon doped hydroxyapatite (Si-HA), Tissue engineering

Levato, R., Planell, J. A., Mateos-Timoneda, M. A., Engel, E., (2015). Role of ECM/peptide coatings on SDF-1α triggered mesenchymal stromal cell migration from microcarriers for cell therapy Acta Biomaterialia 18, 59-67

Many cell therapies rely on the ability of mesenchymal stromal cells (MSCs) to diffuse and localize throughout the target tissue-such as tumoral and ischemic tissues-, in response to specific cytokine signals, rather than being concentrated at the site of implantation. Therefore, it is fundamental to engineer biomaterial carriers as reservoirs, from which cells can migrate, possibly in a controlled manner. In this work, microcarriers (μCs) made of polylactic acid are characterized as MSC delivery vehicles capable of modulating key chemotactic pathways. The effect of different functionalization strategies on MSC migratory behavior from the μCs is studied in vitro in relation to SDF-1α/CXCR4 axis,-a major actor in MSC recruitment, chemotaxis and homing. Collagen and arginine-glycine-aspartic acid (RGD) peptides were either covalently grafted or physisorbed on μC surface. While stable covalent modifications promoted better cell adhesion and higher proliferation compared to physisorption, the functionalization method of the μCs also affected the cells migratory behavior in response to SDF-1α (CXCL12) stimulation. Less stable coatings (physisorbed) showed sensibly higher number of migrating cells than covalent collagen/RGD coatings. The combination of physic-chemical cues provided by protein/peptide functionalization and stimuli induced by 3D culture on μCs improved MSC expression of CXCR4, and exerted a control over cell migration, a condition suitable to promote cell homing after transplantation in vivo. These are key findings to highlight the impact of surface modification approaches on chemokine-triggered cell release, and allow designing biomaterials for efficient and controlled cell delivery to damaged tissues.

Keywords: Cell therapy, Chemotaxis, ECM (extracellular matrix), Mesenchymal stromal cells, Surface modification

González-Vázquez, A., Planell, J. A., Engel, E., (2014). Extracellular calcium and CaSR drive osteoinduction in mesenchymal stromal cells Acta Biomaterialia 10, (6), 2824–2833

Bone is the main store of calcium and progenitor cells in the body. During the resorption process, the local calcium concentration reaches 8-40 mM, and the surrounding cells are exposed to these fluctuations in calcium. This stimulus is a signal that is detected through the calcium sensing receptor (CaSR), which modulates chemotactic and proliferative G protein-dependent signaling pathways. The objective of the present work is to evaluate the roles of extracellular calcium ([Ca2+]o) and the CaSR in osteoinduction. Rat bone marrow mesenchymal stromal cells (rBMSCs) were stimulated with 10 mM of Ca2+. Several experiments were conducted to demonstrate the effect of [Ca2+]o on chemotaxis, proliferation and differentiation on the osteoblastic lineage. It was found that [Ca2+]o induces rBMSCs to migrate and proliferate in a concentration-dependent manner. Real-time polymerase chain reaction and immunofluorescence also revealed that 10 mM Ca2+ stimulates overexpression of osteogenic markers in rBMSCs, including alkaline phosphatase (ALP), bone sialoprotein, collagen Ia1 and osteocalcin. Functional assays determining ALP activity and mineralization tests both corroborate the increased expression of these markers in rBMSCs stimulated with Ca2+. Moreover, CaSR blockage inhibited the cellular response to stimulation with high concentrations of [Ca2+]o, revealing that the CaSR is a key modulator of these cellular responses.

Keywords: Calcium sensing receptor (CaSR), Extracellular calcium, Mesenchymal stromal cells (MSCs), Osteoinduction, Regenerative medicine

Vila, Olaia F., Bagó, Juli R., Navarro, Melba, Alieva, Maria, Aguilar, Elisabeth, Engel, Elisabeth, Planell, Josep, Rubio, Nuria, Blanco, Jerónimo, (2013). Calcium phosphate glass improves angiogenesis capacity of poly(lactic acid) scaffolds and stimulates differentiation of adipose tissue-derived mesenchymal stromal cells to the endothelial lineage Journal of Biomedical Materials Research - Part A , 101A, (4), 932-941

The angiogenic capacity of a new biomaterial composite of poly(lactic acid) and calcium phosphate glass (PLA/CaP) was analyzed by noninvasive bioluminescence imaging (BLI) and histological procedures. Human adipose tissue-derived mesenchymal stromal cells expressing cytomegalovirus (CMV) promoter regulated Photinus pyralis luciferase (hAMSC-PLuc) grew up to 30 times the initial cell load, in vitro, when seeded in PLA/CaP scaffolds, but suffered an initial growth crisis followed by recovery when the scaffolds were subcutaneously implanted in SCID mice. To analyze changes in gene expression, hAMSC-PLuc cells were double labeled with a CMV promoter regulated Renilla reniformis luciferase and a Photinus pyralis luciferase reporter regulated by either the PECAM promoter or a hypoxia response element (HRE) artificial promoter and seeded in PLA/CaP and PLA scaffolds implanted in SCID mice. Analysis by BLI showed that hAMSCs in scaffolds were induced to differentiate to the endothelial lineage and did this faster in PLA/CaP than in PLA scaffolds. Endothelial differentiation correlated with a decrease in the activity of HRE regulated luciferase expression, indicative of a reduction of hypoxia. Histological analysis showed that PLA/CaP scaffolds were colonized by a functional host vascular system. Moreover, colonization by isolectin B4 positive host cells was more effective in PLA/CaP than in PLA scaffolds, corroborating BLI results.

Keywords: Scaffold, Bioluminescence imaging, Cell differentiation, Angiogenesis, Mesenchymal stromal cells