by Keyword: Obstructive sleep apnea

By year:[ 2021 | 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Torres, M., Martinez-Garcia, M. A., Campos-Rodriguez, F., Gozal, D., Montserrat, J. M., Navajas, D., Farré, R., Almendros, I., (2020). Lung cancer aggressiveness in an intermittent hypoxia murine model of postmenopausal sleep apnea Menopause 27, (6), 706-713

Objective: Intermittent hypoxia (IH)—a hallmark of obstructive sleep apnea (OSA)—enhances lung cancer progression in mice via altered host immune responses that are also age and sex-dependent. However, the interactions of menopause with IH on tumor malignant properties remain unexplored. Here, we aimed to investigate lung cancer outcomes in the context of ovariectomy (OVX)-induced menopause in a murine model of OSA. Methods: Thirty-four female mice (C57BL/6, 12-week-old) were subjected to bilateral OVX or to Sham intervention. Six months after surgery, mice were pre-exposed to either IH or room air (RA) for 2 weeks. Then, 105 lung carcinoma (LLC1) cells were injected subcutaneously in the left flank, with IH or RA exposures continued for 4 weeks. Tumor weight, tumor invasion, and spontaneous lung metastases were assessed. Tumor-associated macrophages (TAMs) were isolated and subjected to flow cytometry polarity evaluation along with assessment of TAMs modulation of LLC1 proliferation in vitro. To determine the effect of IH and OVX on each experimental variable, a two-way analysis of variance was performed. Results: IH and OVX promoted a similar increase in tumor growth (2-fold; P = 0.05 and 1.74-fold; P < 0.05, respectively), and OVX-IH further increased it. Regarding lung metastasis, the concurrence of OVX in mice exposed to IH enhanced the number of metastases (23.7 ± 8.0) in comparison to those without OVX (7.9 ± 2.8; P < 0.05). The pro-tumoral phenotype of TAMS, assessed as M2/M1 ratio, was increased in OVX (0.06 ± 0.01; P < 0.01) and IH (0.06 ± 0.01; P < 0.01) compared with sham/RA conditions (0.14 ± 0.03). The co-culture of TAMS with naive LLC1 cells enhanced their proliferation only under IH. Conclusion: In female mice, both the IH that is characteristically present in OSA and OVX as a menopause model emerge as independent contributors that promote lung cancer aggressiveness and seemingly operate through alterations in the host immune response.

Keywords: Animal models, Cancer progression, Intermittent hypoxia, Menopause, Obstructive sleep apnea, Ovariectomy

Farré, N., Otero, J., Falcones, B., Torres, M., Jorba, I., Gozal, D., Almendros, I., Farré, R., Navajas, D., (2018). Intermittent hypoxia mimicking sleep apnea increases passive stiffness of myocardial extracellular matrix. A multiscale study Frontiers in Physiology 9, Article 1143

Background: Tissue hypoxia-reoxygenation characterizes obstructive sleep apnea (OSA), a very prevalent respiratory disease associated with increased cardiovascular morbidity and mortality. Experimental studies indicate that intermittent hypoxia (IH) mimicking OSA induces oxidative stress and inflammation in heart tissue at the cell and molecular levels. However, it remains unclear whether IH modifies the passive stiffness of the cardiac tissue extracellular matrix (ECM). Aim: To investigate multiscale changes of stiffness induced by chronic IH in the ECM of left ventricular (LV) myocardium in a murine model of OSA. Methods: Two-month and 18-month old mice (N = 10 each) were subjected to IH (20% O2 40 s–6% O2 20 s) for 6 weeks (6 h/day). Corresponding control groups for each age were kept under normoxia. Fresh LV myocardial strips (~7 mm × 1 mm × 1 mm) were prepared, and their ECM was obtained by decellularization. Myocardium ECM macroscale mechanics were measured by performing uniaxial stress–strain tensile tests. Strip macroscale stiffness was assessed as the stress value (σ) measured at 0.2 strain and Young’s modulus (EM) computed at 0.2 strain by fitting Fung’s constitutive model to the stress–strain relationship. ECM stiffness was characterized at the microscale as the Young’s modulus (Em) measured in decellularized tissue slices (~12 μm tick) by atomic force microscopy. Results: Intermittent hypoxia induced a ~1.5-fold increase in σ (p < 0.001) and a ~2.5-fold increase in EM (p < 0.001) of young mice as compared with normoxic controls. In contrast, no significant differences emerged in Em among IH-exposed and normoxic mice. Moreover, the mechanical effects of IH on myocardial ECM were similar in young and aged mice. Conclusion: The marked IH-induced increases in macroscale stiffness of LV myocardium ECM suggests that the ECM plays a role in the cardiac dysfunction induced by OSA. Furthermore, absence of any significant effects of IH on the microscale ECM stiffness suggests that the significant increases in macroscale stiffening are primarily mediated by 3D structural ECM remodeling.

Keywords: Atomic force microscopy, Heart mechanics, Myocardial stiffness, Obstructive sleep apnea, Tensile test, Ventricular strain

Jorba, I., Menal, M. J., Torres, M., Gozal, D., Piñol-Ripoll, G., Colell, A., Montserrat, J. M., Navajas, D., Farré, R., Almendros, I., (2017). Ageing and chronic intermittent hypoxia mimicking sleep apnea do not modify local brain tissue stiffness in healthy mice Journal of the Mechanical Behavior of Biomedical Materials , 71, 106-113

Recent evidence suggests that obstructive sleep apnea (OSA) may increase the risk of Alzheimer´s disease (AD), with the latter promoting alterations in brain tissue stiffness, a feature of ageing. Here, we assessed the effects of age and intermittent hypoxia (IH) on brain tissue stiffness in a mouse model of OSA. Two-month-old and 18-month-old mice (N=10 each) were subjected to IH (20% O2 40 s – 6% O2 20 s) for 8 weeks (6 h/day). Corresponding control groups for each age were kept under normoxic conditions in room air (RA). After sacrifice, the brain was excised and 200-micron coronal slices were cut with a vibratome. Local stiffness of the cortex and hippocampus were assessed in brain slices placed in an Atomic Force Microscope. For both brain regions, the Young's modulus (E) in each animal was computed as the average values from 9 force-indentation curves. Cortex E mean (±SE) values were 442±122 Pa (RA) and 455±120 (IH) for young mice and 433±44 (RA) and 405±101 (IH) for old mice. Hippocampal E values were 376±62 (RA) and 474±94 (IH) for young mice and 486±93 (RA) and 521±210 (IH) for old mice. For both cortex and hippocampus, 2-way ANOVA indicated no statistically significant effects of age or challenge (IH vs. RA) on E values. Thus, neither chronic IH mimicking OSA nor ageing up to late middle age appear to modify local brain tissue stiffness in otherwise healthy mice.

Keywords: Atomic Force Microscopy, Brain mechanics, Cortex stiffness, Hippocampus stiffness, Obstructive sleep apnea, Young's modulus

Campillo, N., Jorba, I., Schaedel, L., Casals, B., Gozal, D., Farré, R., Almendros, I., Navajas, D., (2016). A novel chip for cyclic stretch and intermittent hypoxia cell exposures mimicking obstructive sleep apnea Frontiers in Physiology 7, Article 319

Intermittent hypoxia (IH), a hallmark of obstructive sleep apnea (OSA), plays a critical role in the pathogenesis of OSA-associated morbidities, especially in the cardiovascular and respiratory systems. Oxidative stress and inflammation induced by IH are suggested as main contributors of end-organ dysfunction in OSA patients and animal models. Since the molecular mechanisms underlying these in vivo pathological responses remain poorly understood, implementation of experimental in vitro cell-based systems capable of inducing high-frequency IH would be highly desirable. Here, we describe the design, fabrication, and validation of a versatile chip for subjecting cultured cells to fast changes in gas partial pressure and to cyclic stretch. The chip is fabricated with polydimethylsiloxane (PDMS) and consists of a cylindrical well-covered by a thin membrane. Cells cultured on top of the membrane can be subjected to fast changes in oxygen concentration (equilibrium time ~6 s). Moreover, cells can be subjected to cyclic stretch at cardiac or respiratory frequencies independently or simultaneously. Rat bone marrow-derived mesenchymal stem cells (MSCs) exposed to IH mimicking OSA and cyclic stretch at cardiac frequencies revealed that hypoxia-inducible factor 1a (HIF-1a) expression was increased in response to both stimuli. Thus, the chip provides a versatile tool for the study of cellular responses to cyclical hypoxia and stretch.

Keywords: Cell stretch, Hypoxia-inducible factor, Intermittent hypoxia, Lab-on-a-chip, Obstructive sleep apnea

da Palma, R. K., Farré, R., Montserrat, J. M., Gorbenko Del Blanco, D., Egea, G., de Oliveira, L. V. F., Navajas, D., Almendros, I., (2015). Increased upper airway collapsibility in a mouse model of Marfan syndrome Respiratory Physiology & Neurobiology , 207, 58-60

Marfan syndrome (MFS) is a genetic disorder caused by mutations in the FBN1 gene that codifies for fibrilin-1. MFS affects elastic fiber formation and the resulting connective tissue shows abnormal tissue laxity and organization. Although an increased prevalence of obstructive sleep apnea among patients with MFS has been described, the potential effects of this genetic disease on the collapsible properties of the upper airway are unknown. The aim of this study was to assess the collapsible properties of the upper airway in a mouse model of MFS Fbn1(C1039G/+) that is representative of most of the clinical manifestations observed in human patients. The upper airway in wild-type and Marfan mice was cannulated and its critical pressure (Pcrit) was measured in vivo by increasing the negative pressure through a controlled pressure source. Pcrit values from MFS mice were higher (less negative) compared to wild-type mice (-3.1±0.9cmH2O vs. -7.8±2.0cm H2O) suggesting that MFS increases the upper airway collapsibility, which could in turn explain the higher prevalence of OSA in MFS patients.

Keywords: Marfan syndrome, Obstructive sleep apnea, Upper airway collapsibility

Jané, R., Lazaro, J., Ruiz, P., Gil, E., Navajas, D., Farre, R., Laguna, P., (2013). Obstructive Sleep Apnea in a rat model: Effects of anesthesia on autonomic evaluation from heart rate variability measures CinC 2013 Computing in Cardiology Conference (CinC) , IEEE (Zaragoza, Spain) , 1011-1014

Rat model of Obstructive Sleep Apnea (OSA) is a realistic approach for studying physiological mechanisms involved in sleep. Rats are usually anesthetized and autonomic nervous system (ANS) could be blocked. This study aimed to assess the effect of anesthesia on ANS activity during OSA episodes. Seven male Sprague-Dawley rats were anesthetized intraperitoneally with urethane (1g/kg). The experiments were conducted applying airway obstructions, simulating 15s-apnea episodes for 15 minutes. Five signals were acquired: respiratory pressure and flow, SaO2, ECG and photoplethysmography (PPG). In total, 210 apnea episodes were studied. Normalized power spectrum of Pulse Rate Variability (PRV) was analyzed in the Low Frequency (LF) and High Frequency (HF) bands, for each episode in consecutive 15s intervals (before, during and after the apnea). All episodes showed changes in respiratory flow and SaO2 signal. Conversely, decreases in the amplitude fluctuations of PPG (DAP) were not observed. Normalized LF presented extremely low values during breathing (median=7,67%), suggesting inhibition of sympathetic system due to anesthetic effect. Subtle increases of LF were observed during apnea. HRV and PPG analysis during apnea could be an indirect tool to assess the effect and deep of anesthesia.

Keywords: electrocardiography, fluctuations, medical disorders, medical signal detection, medical signal processing, neurophysiology, photoplethysmography, pneumodynamics, sleep, ECG, SaO2 flow, SaO2 signal, airway obstructions, amplitude fluctuations, anesthesia effects, anesthetized nervous system, autonomic evaluation, autonomic nervous system, breathing, heart rate variability, high-frequency bands, low-frequency bands, male Sprague-Dawley rats, normalized power spectrum, obstructive sleep apnea, photoplethysmography, physiological mechanisms, pulse rate variability, rat model, respiratory flow, respiratory pressure, signal acquisition, sympathetic system inhibition, time 15 min, time 15 s, Abstracts, Atmospheric modeling, Computational modeling, Electrocardiography, Rats, Resonant frequency

Tsapikouni, T., Garreta, E., Melo, E., Navajas, D., Farré, R., (2012). A bioreactor for subjecting cultured cells to fast-rate intermittent hypoxia Respiratory Physiology & Neurobiology , 182, (1), 47-52

High frequency intermittent hypoxia is one of the most relevant injurious stimuli experienced by patients with obstructive sleep apnea (OSA). Given that the conventional setting for culturing cells under intermittent hypoxia conditions is limited by long equilibration times, we designed a simple bioreactor capable of effectively subjecting cultured cells to controlled high-frequency hypoxic/normoxic stimuli. The bioreactor's operation is based on exposing cells to a medium that is bubbled with the appropriate mixture of gases into two separate containers, and from there it is directed to the cell culture dish with the aid of two bidirectional peristaltic pumps. The device was tested on human alveolar epithelial cells (A549) and mouse melanoma cells (B16-F10), subjecting them to patterns of intermittent hypoxia (20s at 5% O 2 and 50s at 20% O 2), which realistically mimic OSA of up to severe intensity as defined by the apnea hypopnea index. The proposed bioreactor can be easily and inexpensively assembled and is of practical use for investigating the effects of high-rate changes in oxygen concentration in the cell culture medium.

Keywords: Hypoxia-reoxygenation, Obstructive sleep apnea, Oxygen partial pressure

Almendros, I., Farré, R., Torres, M., Bonsignore, M. R., Dalmases, M., Ramírez, J., Navajas, D., Montserrat, J. M., (2011). Early and mid-term effects of obstructive apneas in myocardial injury and inflammation Sleep Medicine , 12, (10), 1037-1040

Background: Obstructive sleep apnea (OSA) is associated with cardiovascular disorders, but the different comorbidities in OSA patients make it difficult to know their specific effects on the development of cardiovascular injury. The aim of the present study was to investigate whether recurrent obstructive apneas could lead to myocardial injury. Methods: Thirty-six male Sprague-Dawley rats (300-350. g) were either acutely (3. h) or sustainably (5. h/day, for 10. days) subjected to obstructive apneas with a pattern of 15. s each, 60. apneas/h. Corresponding control groups were formed for the acute and sustained models. To assess the induction of systemic inflammation, IL1-β was measured in plasma. Ventricular tissue injury was evaluated by histological techniques (presence of inflammatory cell infiltration, eosin autofluorescence, and detection of apoptosis). Results: After 3. h of obstructive apneas, a significant increase in IL1-β (64.9. ±. 29.6. ng/μl) were observed with respect to the controls (7.3. ±. 1.0. ng/μl), but no myocardial injury was present. Conversely to the acute model, the systemic inflammation triggered by obstructive apneas for 10. days was reduced. However, the percentage of area with enhanced eosin autofluorescence and of apoptotic cells (1.83. ±. 0.35% and 24.4. ±. 1.5%, respectively) was increased when compared to the control group (0.72. ±. 0.20% and 5.0. ±. 2.8%, respectively). Conclusions: This study suggests that obstructive apneas are a potential source of early systemic and ventricular inflammation and myocardial cell injury after sustained apneas application, which could represent an initial phase in the progression of heart disease associated with OSA.

Keywords: Animal models, Inflammation, Myocardial injury, Obstructive sleep apnea

Dellaca, Raffaele, Montserrat, Josep M., Govoni, Leonardo, Pedotti, Antonio, Navajas, Daniel, Farre, Ramon, (2011). Telemetric CPAP titration at home in patients with sleep apnea-hypopnea syndrome Sleep Medicine , 12, (2), 153-157

Background: Home continuous positive airway pressure (CPAP) titration with automatic devices is not possible in a non-negligible percentage of patients with sleep apnea-hypopnea syndrome (SAHS). Objectives: To test the feasibility of a novel telemetric system for home CPAP titration. Methods: One-night home CPAP titration was carried out on 20 SAHS patients (56 +/- 3 years; BMI = 35 +/- 2 kg/m(2)). A telemetric unit, based on the conventional GPRS mobile phone network and connected to a commercial CPAP device, allowed the hospital technician to monitor flow, pressure and air leaks by remote control and titrate CPAP (elimination of apneas, hypopneas, flow limitation and snoring) in real time. After 1 week, a full hospital polysomnography was performed while the patient was subjected to the value of CPAP that was previously titrated at home via telemetry. Results: The home-titrated CPAP systematically improved patients' breathing: the apnea-hypopnea index and percentage of sleep time with arterial oxygen saturation below 90% were reduced from 58.1 +/- 5.1 to 3.8 +/- 0.6 events/h and from 19.8 +/- 1.1% to 4.4 +/- 0.7%, respectively. This CPAP value (9.15 +/- 0.47 cmH(2)O) was virtually the same as the pressure that optimized breathing during hospital polysomnography (9.20 +/- 0.41 cmH(2)O; mean difference: 0.02 cmH(2)O, limits of agreement: +/- 1.00 cmH(2)O). Conclusions: This pilot study shows that a simple telemetric system, requiring neither a special telemedicine network nor any infrastructure in the patient's home, made it possible to perform effective remote CPAP titration on SAHS patients.

Keywords: Home CPAP titration by telemetry, Telecare, Telemedicine, E-health, Obstructive sleep apnea, Point of care

Carreras, Alba, Almendros, Isaac, Montserrat, Josep M., Navajas, Daniel, Farre, Ramon, (2010). Mesenchymal stem cells reduce inflammation in a rat model of obstructive sleep apnea Respiratory Physiology & Neurobiology , 172, (3), 210-212

The aim was to test the hypothesis that mesenchymal stem cells (MSC) could reduce the inflammation induced by recurrent airway occlusions in an animal model of obstructive sleep apnea (OSA). A nasal mask was applied to 30 anesthetized rats. Twenty rats were subjected to a pattern of recurrent obstructive apneas mimicking OSA (60/h, lasting 15 s each) for 5h. MSC (5x10(6) cells) were intravenously injected into 10 of these rats. Ten rats not subjected to apneas or MSC injection were used as controls. The rat blood serum concentrations of pro-inflammatory cytokine IL-1beta were measured by ELISA. IL-1beta was significantly greater in the rats subjected to recurrent apneas (66.7+/-41.2 pg/mL; m+/-SEM) than in controls (1.9+/-1.0 pg/mL; p<0.05). In the group of apneic rats subjected to MSC injection, IL-1beta was significantly reduced (6.1+/-3.8 pg/mL; p<0.05). In conclusion, MSC triggered an early anti-inflammatory response in rats subjected to recurrent obstructive apneas, suggesting that these stem cells could play a role in the physiological response to counterbalance inflammation in OSA.

Keywords: Obstructive sleep apnea, Animal model, Airway obstruction, Inflammation

Farre, R., Montserrat, J. M., Navajas, D., (2008). Assessment of upper airway mechanics during sleep Respiratory Physiology & Neurobiology , 163, (1-3), 74-81

Obstructive sleep apnea, which is the most prevalent sleep breathing disorder, is characterized by recurrent episodes of upper airway collapse and reopening. However, the mechanical properties of the upper airway are not directly measured in routine polysomnography because only qualitative sensors (thermistors for flow and thoraco-abdominal bands for pressure) are used. This review focuses on two techniques that quantify upper airway obstruction during sleep. A Starling model of collapsible conduit allows us to interpret the mechanics of the upper airway by means of two parameters: the critical pressure (Pcrit) and the upstream resistance (Rup). A simple technique to measure Pcrit and Rup involves the application of different levels of continuous positive airway pressure (CPAP) during sleep. The forced oscillation technique is another non-invasive procedure for quantifying upper airway impedance during the breathing cycle in sleep studies. The latest developments in these two methods allow them to be easily applied on a routine basis in order to more fully characterize upper airway mechanics in patients with sleep breathing disorders.

Keywords: Obstructive sleep apnea, Upper airway, Airway resistance, Critical pressure, Respiratory impedance

Farre, R., Nacher, M., Serrano-Mollar, A., Galdiz, J. B., Alvarez, F. J., Navajas, D., Montserrat, J. M., (2007). Rat model of chronic recurrent airway obstructions to study the sleep apnea syndrome Sleep , 30, (7), 930-933

Study Objectives: To implement a chronic rat model of recurrent airway obstructions to study the obstructive sleep apnea (OSA) syndrome. Design: Prospective controlled animal study. Setting: University laboratory. Patients or Participants: 24 male Sprague-Dawley rats (250-300 g). Interventions: The rats were placed in a setup consisting of a body chamber and a head chamber separated by a neck collar specially designed to apply recurrent airway obstructions with OSA patterns. Rats in the Obstruction group (n=8) were subjected to 5-s obstructions at a rate of 60 per hour, 6 h/day during 4 weeks. Sham rats (n=8) were placed in the setup but no obstructions were applied. Naive rats (n=8) were subjected to no intervention. Measurements and Results: Breathing flow, pressure, CO2 air concentration, and SpO(2) showed that the model mimicked OSA respiratory events (obstructive apneas, increased respiratory efforts, and oxygen saturation dips). Animal stress, assessed by body weight and plasma corticosterone, was not significantly different across Obstruction and Sham groups. This supports the concept that this novel model does not introduce a significant burden of stress in the rat after acclimatization to the chamber. Thromboxane-B2/6-keto-Prostaglandin-F1a ratio in plasma, which is an index of vasoconstriction, was significantly increased in the rats subjected to obstructions. Conclusions: The designed animal model of chronic recurrent airway obstructions is feasible and potentially useful to study the mechanisms involved in the cardiovascular consequences of OSA.

Keywords: Obstructive sleep apnea, Animal model, Airway obstruction