Publications

by Keyword: Photoanode


By year:[ 2022 | 2021 | 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Moya-Anderico, L, Vukomanovic, M, Cendra, MD, Segura-Feliu, M, Gil, V, del Rio, JA, Torrents, E, (2021). The application of FTO-Cu2O/Ag3PO4 heterojunction in the photoelectrochemical degradation of emerging pharmaceutical pollutant under visible light irradiation Chemosphere 266, 129231

We report the photoelectrochemical application of a visible light active FTO-Cu2O/Ag3PO4 photoanode for the abatement of sulfamethoxazole in water. The as-synthesised photoanodes were characterised using XRD, field emission SEM, EDX, diffuse reflectance UV-vis, impedance spectroscopy and chronoamperometry. The results obtained confirmed a successful formation of p-n heterojunction at the Cu2O/Ag3PO4 interface. The highest photocurrent response of 0.62 mAcm(-2) was obtained for the composite photoanode which was four times higher than pure Cu2O and about three times higher than pristine Ag3PO4. The photoanode gave 67% removal efficiency within 2 h upon its photoelectrochemical application in the degradation of sulfamethoxazole with 1.5 V bias potential at pH 6.2. The FTO-Cu2O/Ag3PO4 electrode was also applied in the treatment of a cocktail of synthetic organics containing sulfamethoxazole and orange II dye. The photogenerated holes was found to be the major oxidant and the photoanodes was stable and reusable. (C) 2020 Elsevier Ltd. All rights reserved.

Keywords: copper(i) oxide, photoanode, photoelectrochemical degradation, silver phosphate, sulfamethoxazole, Construction, Copper(i) oxide, Enhanced photocatalytic activity, Fabrication, Facile synthesis, Intermediate products, Organic pollutants, P-n heterojunctions, Performance, Photoanode, Photoelectrocatalytic degradation, Photoelectrochemical degradation, Semiconductor, Silver phosphate, Sulfamethoxazole