by Keyword: sphere

By year:[ 2022 | 2021 | 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Clua-Ferré, Laura, Chiara, Francesco, Rodríguez-Comas, Júlia, Comelles, Jordi, Martinez, Elena, Godeau, Amelie Luise, García-Alamán, Ainhoa, Gasa, Rosa, Ramón-Azcón, Javier, (2022). Collagen-Tannic Acid Spheroids for beta-Cell Encapsulation Fabricated Using a 3D Bioprinter Advanced Materials Technologies , 2101696

Konka J, Buxadera-Palomero J, Espanol M, Ginebra M-P, (2021). 3D printing of hierarchical porous biomimetic hydroxyapatite scaffolds: Adding concavities to the convex filaments Acta Biomaterialia 134, 744-759

Porosity plays a key role on the osteogenic performance of bone scaffolds. Direct Ink Writing (DIW) allows the design of customized synthetic bone grafts with patient-specific architecture and controlled macroporosity. Being an extrusion-based technique, the scaffolds obtained are formed by arrays of cylindrical filaments, and therefore have convex surfaces. This may represent a serious limitation, as the role of surface curvature and more specifically the stimulating role of concave surfaces in osteoinduction and bone growth has been recently highlighted. Hence the need to design strategies that allow the introduction of concave pores in DIW scaffolds. In the current study, we propose to add gelatin microspheres as a sacrificial material in a self-setting calcium phosphate ink. Neither the phase transformation responsible for the hardening of the scaffold nor the formation of characteristic network of needle-like hydroxyapatite crystals was affected by the addition of gelatin microspheres. The partial dissolution of the gelatin resulted in the creation of spherical pores throughout the filaments and exposed on the surface, increasing filament porosity from 0.2 % to 67.9 %. Moreover, the presence of retained gelatin proved to have a significant effect on the mechanical properties, reducing the strength but simultaneously giving the scaffolds an elastic behavior, despite the high content of ceramic as a continuous phase. Notwithstanding the inherent difficulty of in vitro cultures with this highly reactive material an enhancement of MG-63 cell proliferation, as well as better spreading of hMSCs was recorded on the developed scaffolds. Statement of significance: Recent studies have stressed the role that concave surfaces play in tissue regeneration and, more specifically, in osteoinduction and osteogenesis. Direct ink writing enables the production of patient-specific bone grafts with controlled architecture. However, besides many advantages, it has the serious limitation that the surfaces obtained are convex. In this article, for the first time we develop a strategy to introduce concave pores in the printed filaments of biomimetic hydroxyapatite by incorporation and partial dissolution of gelatin microspheres. The retention of part of the gelatin results in a more elastic behavior compared to the brittleness of hydroxyapatite scaffolds, while the needle-shaped nanostructure of biomimetic hydroxyapatite is maintained and gelatin-coated concave pores on the surface of the filaments enhance cell spreading. © 2021 The Authors

Keywords: 3d printing, bioceramics, biomimetic, bone, bone regeneration, concavity, concavity, bone regeneration, gelatin, hydrogel, hydroxyapatite, microspheres, osteoinduction, porosity, porous filament, substitutes, tissue-growth, 3d printing, Biomimetic, Calcium-phosphate scaffolds, Concavity, bone regeneration, Gelatin, Hydroxyapatite, Porous filament

Katuri J, Uspal WE, Popescu MN, Sánchez S, (2021). Inferring non-equilibrium interactions from tracer response near confined active Janus particles Science Advances 7,

Chemically active Janus particles sustain non-equilibrium spatial variations in the chemical composition of the suspending solution; these induce hydrodynamic flow and (self-)motility of the particles. Direct mapping of these fields has so far proven to be too challenging. Therefore, indirect methods are needed, e.g., deconvolving the response of “tracer” particles to the activity-induced fields. Here, we study experimentally the response of silica particles, sedimented at a wall, to active Pt/silica Janus particles. The latter are either immobilized at the wall, with the symmetry axis perpendicular or parallel to the wall, or motile. The experiments reveal complex effective interactions that are dependent on the configuration and on the state of motion of the active particle. Within the framework of a coarse-grained model, the behavior of tracers near an immobilized Janus particle can be captured qualitatively once activity-induced osmotic flows on the wall are considered.

Keywords: sphere, Motion

Klein, S., Schierwagen, R., Uschner, F. E., Trebicka, J., (2017). Mouse and rat models of induction of hepatic fibrosis and assessment of portal hypertension Fibrosis (Methods in Molecular Biology) (ed. Rittié, L.), Humana Press (New York, USA) 1627, 91-116

Portal hypertension either develops due to progressive liver fibrosis or is the consequence of vascular liver diseases such as portal vein thrombosis or non-cirrhotic portal hypertension. This chapter focuses on different rodent models of liver fibrosis with portal hypertension and also in few non-cirrhotic portal hypertension models. Importantly, after the development of portal hypertension, the proper assessment of drug effects in the portal and systemic circulation should be discussed. The last part of the chapter is dedicated in these techniques to assess the in vivo hemodynamics and the ex vivo techniques of the isolated liver perfusion and vascular contractility.

Keywords: Aortic ring contraction, Bile duct ligation, Carbon tetrachloride, Colored microsphere technique, High-fat diet, Isolated in situ liver perfusion, Methionine-choline-deficient diet, Partial portal vein ligation, Portal hypertension

Perez, R. A., Del Valle, S., Altankov, G., Ginebra, M. P., (2011). Porous hydroxyapatite and gelatin/hydroxyapatite microspheres obtained by calcium phosphate cement emulsion Journal of Biomedical Materials Research - Part B: Applied Biomaterials , 97B, (1), 156-166

Hydroxyapatite and hybrid gelatine/hydroxyapatite microspheres were obtained through a water in oil emulsion of a calcium phosphate cement (CPC). The setting reaction of the CPC, in this case the hydrolysis of alpha-tricalcium phosphate, was responsible for the consolidation of the microspheres. After the setting reaction, the microspheres consisted of an entangled network of hydroxyapatite crystals, with a high porosity and pore sizes ranging between 0.5 and 5 mu m. The size of the microspheres was tailored by controlling the viscosity of the hydrophobic phase, the rotation speed, and the initial powder size of the CPC. The incorporation of gelatin increased the sphericity of the microspheres, as well as their size and size dispersion. To assess the feasibility of using the microspheres as cell microcarriers, Saos-2 cells were cultured on the microspheres. Fluorescent staining, SEM studies, and LDH quantification showed that the microspheres were able to sustain cell growth. Cell adhesion and proliferation was significantly improved in the hybrid gelatin/hydroxyapatite microspheres as compared to the hydroxyapatite ones.

Keywords: Calcium phosphate(s), Bone graft, Microspheres, Composite/hard tissue, Hydroxy(1)lapatite