by Keyword: Animal experiment

Humbert, P, Kampleitner, C, De Lima, J, Brennan, MA, Lodoso-Torrecilla, I, Sadowska, JM, Blanchard, F, Canal, C, Ginebra, MP, Hoffmann, O, Layrolle, P, (2024). Phase composition of calcium phosphate materials affects bone formation by modulating osteoclastogenesis Acta Biomaterialia 176, 417-431

Human mesenchymal stromal cells (hMSCs) seeded on calcium phosphate (CaP) bioceramics are extensively explored in bone tissue engineering and have recently shown effective clinical outcomes. In previous pre-clinical studies, hMSCs-CaP-mediated bone formation was preceded by osteoclastogenesis at the implantation site. The current study evaluates to what extent phase composition of CaPs affects the osteoclast response and ultimately influence bone formation. To this end, four different CaP bioceramics were used, hydroxyapatite (HA), beta-tricalcium phosphate (beta-TCP) and two biphasic composites of HA/beta- TCP ratios of 60/40 and 20/80 respectively, for in vitro osteoclast differentiation and correlation with in vivo osteoclastogenesis and bone formation. All ceramics allowed osteoclast formation in vitro from mouse and human precursors, except for pure HA, which significantly impaired their maturation. Ectopic implantation alongside hMSCs in subcutis sites of nude mice revealed new bone formation at 8 weeks in all conditions with relative amounts for beta-TCP > biphasic CaPs > HA. Surprisingly, while hMSCs were essential for osteoinduction, their survival did not correlate with bone formation. By contrast, the degree of early osteoclastogenesis (2 weeks) seemed to define the extent of subsequent bone formation. Together, our findings suggest that the osteoclastic response could be used as a predictive marker in hMSC-CaPbased bone regeneration and strengthens the need to understand the underlying mechanisms for future biomaterial development. Statement of significance The combination of mesenchymal stromal cells (MSCs) and calcium phosphate (CaP) materials has demonstrated its safety and efficacy for bone regeneration in clinical trials, despite our insufficient understanding of the underlying biological mechanisms. Osteoclasts were previously suggested as key mediators between the early inflammatory phase following biomaterial implantation and the subsequent bone formation. Here we compared the affinity of osteoclasts for various CaP materials with different ratios of hydroxyapatite to beta-tricalcium phosphate. We found that osteoclast formation, both in vitro and at early stages in vivo, correlates with bone formation when the materials were implanted alongside MSCs in mice. Surprisingly, MSC survival did not correlate with bone formation, suggesting that the number or phenotype of osteoclasts formed was more important. (c) 2024 The Author(s). Published by Elsevier Ltd on behalf of Acta Materialia Inc. This is an open access article under the CC BY license ( )

JTD Keywords: Acid phosphatase tartrate resistant isoenzyme, Animal, Animal cell, Animal experiment, Animal tissue, Animals, Article, Beta-tricalcium phosphate, Bioceramics, Biocompatible materials, Biomaterial, Bone, Bone development, Bone formation, Bone regeneration, Calcium phosphate, Calcium phosphate materials, Calcium phosphates, Cd14 antigen, Cell differentiation, Cell engineering, Cell maturation, Cell survival, Ceramics, Chemical composition, Controlled study, Correlation analysis, Correlation coefficient, Data correlation, Durapatite, Engraftment, Flowcharting, Human, Human cell, Human mesenchymal stromal cell, Human mesenchymal stromal cells, Humans, Hydroxyapatite, Hydroxyapatites, In vitro study, In vivo study, In-vitro, In-vivo, Mammals, Marrow stromal cells, Material composition, Material compositions, Mesenchymal stroma cell, Mesenchymal stromal cells, Mice, Mice, nude, Monocyte, Mouse, Nonhuman, Nude mouse, Ossification, Osteoclast, Osteoclastogenesis, Osteoclasts, Osteogenesis, Osteoinduction, Phase composition, Regeneration strategies, Resorption, Scaffolds, Stem-cells, Subcutaneous tissue, Tissue engineering, Transmission control protocol, Tri-calcium phosphates, Vimentin

Farré, R, Rodríguez-Lázaro, MA, Otero, J, Gavara, N, Sunyer, R, Farré, N, Gozal, D, Almendros, I, (2024). Low-cost, open-source device for simultaneously subjecting rodents to different circadian cycles of light, food, and temperature Frontiers In Physiology 15, 1356787

Exposure of experimental rodents to controlled cycles of light, food, and temperature is important when investigating alterations in circadian cycles that profoundly influence health and disease. However, applying such stimuli simultaneously is difficult in practice. We aimed to design, build, test, and open-source describe a simple device that subjects a conventional mouse cage to independent cycles of physiologically relevant environmental variables. The device is based on a box enclosing the rodent cage to modify the light, feeding, and temperature environments. The device provides temperature-controlled air conditioning (heating or cooling) by a Peltier module and includes programmable feeding and illumination. All functions are set by a user-friendly front panel for independent cycle programming. Bench testing with a model simulating the CO2 production of mice in the cage showed: a) suitable air renewal (by measuring actual ambient CO2), b) controlled realistic illumination at the mouse enclosure (measured by a photometer), c) stable temperature control, and d) correct cycling of light, feeding, and temperature. The cost of all the supplies (retail purchased by e-commerce) was <300 US$. Detailed technical information is open-source provided, allowing for any user to reliably reproduce or modify the device. This approach can considerably facilitate circadian research since using one of the described low-cost devices for any mouse group with a given light-food-temperature paradigm allows for all the experiments to be performed simultaneously, thereby requiring no changes in the light/temperature of a general-use laboratory. 1 Introduction

JTD Keywords: Animal experiment, Animal model, Animal research, Article, Circadian alteration, Circadian rhythm, Commercial phenomena, Controlled study, Cycling, Energy consumption, Energy-expenditure, Experimental model, Feeding, Food, Food availability, Illumination, Intermittent fasting, Light, Light cycle, Light dark cycle, Mouse, Nonhuman, Open source technology, Open-source hardware, Performance, Photography, Research, Rhythms, Rodent, Temperature, Temperature cycle

Liu, M, Zhang, C, Gong, XM, Zhang, T, Lian, MM, Chew, EGY, Cardilla, A, Suzuki, K, Wang, HM, Yuan, Y, Li, Y, Naik, MY, Wang, YX, Zhou, BR, Soon, WZ, Aizawa, E, Li, P, Low, JH, Tandiono, M, Montagud, E, Moya-Rull, D, Esteban, CR, Luque, Y, Fang, ML, Khor, CC, Montserrat, N, Campistol, JM, Belmonte, JCI, Foo, JN, Xia, Y, (2024). Kidney organoid models reveal cilium-autophagy metabolic axis as a therapeutic target for PKD both in vitro and in vivo Cell Stem Cell 31, 52-70.e8

Human pluripotent stem cell -derived kidney organoids offer unprecedented opportunities for studying polycystic kidney disease (PKD), which still has no effective cure. Here, we developed both in vitro and in vivo organoid models of PKD that manifested tubular injury and aberrant upregulation of renin-angiotensin aldosterone system. Single -cell analysis revealed that a myriad of metabolic changes occurred during cystogenesis, including defective autophagy. Experimental activation of autophagy via ATG5 overexpression or primary cilia ablation significantly inhibited cystogenesis in PKD kidney organoids. Employing the organoid xenograft model of PKD, which spontaneously developed tubular cysts, we demonstrate that minoxidil, a potent autophagy activator and an FDA -approved drug, effectively attenuated cyst formation in vivo. This in vivo organoid model of PKD will enhance our capability to discover novel disease mechanisms and validate candidate drugs for clinical translation.

JTD Keywords: Adenylate kinase, Adult, Animal cell, Animal experiment, Animal model, Animal tissue, Article, Autophagosome, Autophagy, Autophagy (cellular), Autosomal-dominant, Calcium homeostasis, Cilia, Cilium, Cohort analysis, Controlled study, Cyclic amp, Disease, Dominant polycystic kidney, Enzyme linked immunosorbent assay, Epithelium, Exon, Expression, Female, Food and drug administration, Framework, Generation, Growth, Hepatitis a virus cellular receptor 1, Human, Human cell, Humans, Immunohistochemistry, In vitro study, In vivo study, Kidney, Kidney organoid, Kidney polycystic disease, Male, Minoxidil, Mouse, Mutations, Nonhuman, Organoid, Organoids, Platelet derived growth factor beta receptor, Pluripotent stem-cells, Polycystic kidney diseases, Protein kinase lkb1, Renin, Sequestosome 1, Single cell analysis, Single cell rna seq, Small nuclear rna, Tunel assay, Upregulation, Western blotting, Whole exome sequencing

Cañellas-Socias, A, Cortina, C, Hernando-Momblona, X, Palomo-Ponce, S, Mulholland, EJ, Turon, G, Mateo, L, Conti, S, Roman, O, Sevillano, M, Slebe, F, Stork, D, Caballé-Mestres, A, Berenguer-Llergo, A, Alvarez-Varela, A, Fenderico, N, Novellasdemunt, L, Jiménez-Gracia, L, Sipka, T, Bardia, L, Lorden, P, Colombelli, J, Heyn, H, Trepat, X, Tejpar, S, Sancho, E, Tauriello, DVF, Leedham, S, Attolini, CSO, Batlle, E, (2022). Metastatic recurrence in colorectal cancer arises from residual EMP1+ cells Nature 611, 603-613

Around 30-40% of patients with colorectal cancer (CRC) undergoing curative resection of the primary tumour will develop metastases in the subsequent years1. Therapies to prevent disease relapse remain an unmet medical need. Here we uncover the identity and features of the residual tumour cells responsible for CRC relapse. An analysis of single-cell transcriptomes of samples from patients with CRC revealed that the majority of genes associated with a poor prognosis are expressed by a unique tumour cell population that we named high-relapse cells (HRCs). We established a human-like mouse model of microsatellite-stable CRC that undergoes metastatic relapse after surgical resection of the primary tumour. Residual HRCs occult in mouse livers after primary CRC surgery gave rise to multiple cell types over time, including LGR5+ stem-like tumour cells2-4, and caused overt metastatic disease. Using Emp1 (encoding epithelial membrane protein 1) as a marker gene for HRCs, we tracked and selectively eliminated this cell population. Genetic ablation of EMP1high cells prevented metastatic recurrence and mice remained disease-free after surgery. We also found that HRC-rich micrometastases were infiltrated with T cells, yet became progressively immune-excluded during outgrowth. Treatment with neoadjuvant immunotherapy eliminated residual metastatic cells and prevented mice from relapsing after surgery. Together, our findings reveal the cell-state dynamics of residual disease in CRC and anticipate that therapies targeting HRCs may help to avoid metastatic relapse.© 2022. The Author(s), under exclusive licence to Springer Nature Limited.

JTD Keywords: colonization, defines, human colon, mutations, plasticity, retrieval, stem-cells, subtypes, underlie, Animal, Animal cell, Animal experiment, Animal model, Animal tissue, Animals, Article, Cancer, Cancer growth, Cancer immunotherapy, Cancer inhibition, Cancer recurrence, Cancer staging, Cell, Cell adhesion, Cell migration, Cell population, Cell surface receptor, Cohort analysis, Colorectal cancer, Colorectal neoplasms, Colorectal tumor, Comprehensive molecular characterization, Controlled study, Crispr-cas9 system, Cytoskeleton, Disease exacerbation, Disease progression, Dynamics, Emp1 gene, Epithelial membrane protein-1, Extracellular matrix, Flow cytometry, Fluorescence intensity, Gene expression, Genetics, Human, Human cell, Humans, Immune response, Immunofluorescence, In situ hybridization, Marker gene, Metastasis potential, Mice, Minimal residual disease, Mouse, Neoplasm proteins, Neoplasm recurrence, local, Neoplasm, residual, Nonhuman, Pathology, Phenotype, Prevention and control, Protein, Receptors, cell surface, Single cell rna seq, Tumor, Tumor protein, Tumor recurrence

Beltran, G, Navajas, D, García-Aznar, JM, (2022). Mechanical modeling of lung alveoli: From macroscopic behaviour to cell mechano-sensing at microscopic level Journal Of The Mechanical Behavior Of Biomedical Materials 126, 105043

The mechanical signals sensed by the alveolar cells through the changes in the local matrix stiffness of the extracellular matrix (ECM) are determinant for regulating cellular functions. Therefore, the study of the mechanical response of lung tissue becomes a fundamental aspect in order to further understand the mechanosensing signals perceived by the cells in the alveoli. This study is focused on the development of a finite element (FE) model of a decellularized rat lung tissue strip, which reproduces accurately the mechanical behaviour observed in the experiments by means of a tensile test. For simulating the complex structure of the lung parenchyma, which consists of a heterogeneous and non-uniform network of thin-walled alveoli, a 3D model based on a Voronoi tessellation is developed. This Voronoi-based model is considered very suitable for recreating the geometry of cellular materials with randomly distributed polygons like in the lung tissue. The material model used in the mechanical simulations of the lung tissue was characterized experimentally by means of AFM tests in order to evaluate the lung tissue stiffness on the micro scale. Thus, in this study, the micro (AFM test) and the macro scale (tensile test) mechanical behaviour are linked through the mechanical simulation with the 3D FE model based on Voronoi tessellation. Finally, a micro-mechanical FE-based model is generated from the Voronoi diagram for studying the stiffness sensed by the alveolar cells in function of two independent factors: the stretch level of the lung tissue and the geometrical position of the cells on the extracellular matrix (ECM), distinguishing between pneumocyte type I and type II. We conclude that the position of the cells within the alveolus has a great influence on the local stiffness perceived by the cells. Alveolar cells located at the corners of the alveolus, mainly type II pneumocytes, perceive a much higher stiffness than those located in the flat areas of the alveoli, which correspond to type I pneumocytes. However, the high stiffness, due to the macroscopic lung tissue stretch, affects both cells in a very similar form, thus no significant differences between them have been observed. © 2021 The Authors

JTD Keywords: rat, scaffolds, stiffness, Afm, Animal cell, Animal experiment, Animal model, Animal tissue, Article, Biological organs, Cell function, Cells, Computational geometry, Cytology, Extracellular matrices, Extracellular matrix, Extracellular-matrix, Geometry, High stiffness, Human, Lung alveolus cell type 1, Lung alveolus cell type 2, Lung parenchyma, Lung tissue, Male, Mechanical behavior, Mechanical modeling, Mechanical simulations, Mechanosensing, Model-based opc, Nonhuman, Physical model, Rat, Rigidity, Stiffness, Stiffness matrix, Tensile testing, Thin walled structures, Three dimensional finite element analysis, Tissue, Type ii, Voronoi tessellations

Gawish, R, Starkl, P, Pimenov, L, Hladik, A, Lakovits, K, Oberndorfer, F, Cronin, SJF, Ohradanova-Repic, A, Wirnsberger, G, Agerer, B, Endler, L, Capraz, T, Perthold, JW, Cikes, D, Koglgruber, R, Hagelkruys, A, Montserrat, N, Mirazimi, A, Boon, L, Stockinger, H, Bergthaler, A, Oostenbrink, C, Penninger, JM, Knapp, S, (2022). ACE2 is the critical in vivo receptor for SARS-CoV-2 in a novel COVID-19 mouse model with TNF-and IFNy-driven immunopathology Elife 11, e74623

Despite tremendous progress in the understanding of COVID-19, mechanistic insight into immunological, disease-driving factors remains limited. We generated maVie16, a mouse-adapted SARS-CoV-2, by serial passaging of a human isolate. In silico modeling revealed how only three Spike mutations of maVie16 enhanced interaction with murine ACE2. maVie16 induced profound pathology in BALB/c and C57BL/6 mice, and the resulting mouse COVID-19 (mCOVID-19) replicated critical aspects of human disease, including early lymphopenia, pulmonary immune cell infiltration, pneumonia, and specific adaptive immunity. Inhibition of the proinflammatory cyto-kines IFN? and TNF substantially reduced immunopathology. Importantly, genetic ACE2-deficiency completely prevented mCOVID-19 development. Finally, inhalation therapy with recombinant ACE2 fully protected mice from mCOVID-19, revealing a novel and efficient treatment. Thus, we here present maVie16 as a new tool to model COVID-19 for the discovery of new therapies and show that disease severity is determined by cytokine-driven immunopathology and critically dependent on ACE2 in vivo. © Gawish et al.

JTD Keywords: covid-19 mouse model, covid-19 therapy, cytokine storm, immunology, inflammation, mavie16, mouse, mouse-adapted sars-cov-2, program, recombinant soluble ace2, tmprss2, Adaptive immunity, Angiotensin converting enzyme 2, Angiotensin-converting enzyme 2, Animal, Animal cell, Animal experiment, Animal model, Animal tissue, Animals, Apoptosis, Article, Bagg albino mouse, Breathing rate, Bronchoalveolar lavage fluid, C57bl mouse, Cell composition, Cell infiltration, Controlled study, Coronavirus disease 2019, Coronavirus spike glycoprotein, Covid-19, Cytokeratin 18, Cytokine production, Dipeptidyl carboxypeptidase, Disease model, Disease models, animal, Disease severity, Drosophila-melanogaster, Enzyme linked immunosorbent assay, Expression vector, Flow cytometry, Gamma interferon, Gene editing, Gene expression, Gene mutation, Genetic engineering, Genetics, Glycosylation, High mobility group b1 protein, Histology, Histopathology, Immune response, Immunocompetent cell, Immunology, Immunopathology, Interferon-gamma, Interleukin 2, Metabolism, Mice, inbred balb c, Mice, inbred c57bl, Mouse-adapted sars-cov-2, Myeloperoxidase, Neuropilin 1, Nonhuman, Nucleocapsid protein, Pathogenicity, Peptidyl-dipeptidase a, Pyroptosis, Recombinant soluble ace2, Renin angiotensin aldosterone system, Rna extraction, Rna isolation, Sars-cov-2, Severe acute respiratory syndrome coronavirus 2, Spike glycoprotein, coronavirus, T lymphocyte activation, Trabecular meshwork, Tumor necrosis factor, Virology, Virus load, Virus replication, Virus transmission, Virus virulence

Macedo, MH, Barros, AS, Martinez, E, Barrias, CC, Sarmento, B, (2022). All layers matter: Innovative three-dimensional epithelium-stroma-endothelium intestinal model for reliable permeability outcomes Journal Of Controlled Release 341, 414-430

Drug development is an ever-growing field, increasingly requesting reliable in vitro tools to speed up early screening phases, reducing the need for animal experiments. In oral delivery, understanding the absorption pattern of a new drug in the small intestine is paramount. Classical two-dimensional (2D) in vitro models are generally too simplistic and do not accurately represent native tissues. The main goal of this work was to develop an advanced three-dimensional (3D) in vitro intestinal model to test absorption in a more reliable manner, by better mimicking the native environment. The 3D model is composed of a collagen-based stromal layer with embedded fibroblasts mimicking the intestinal lamina propria and providing support for the epithelium, composed of enterocytes and mucus-secreting cells. An endothelial layer, surrogating the absorptive capillary network, is also present. The cellular crosstalk between the different cells present in the model is unveiled, disclosing key players, namely those involved in the contraction of collagen by fibroblasts. The developed 3D model presents lower levels of P-glycoprotein (P-gp) and Multidrug Resistance Protein 2 (MRP2) efflux transporters, which are normally overexpressed in traditional Caco-2 models, and are paramount in the absorption of many compounds. This, allied with transepithelial electrical resistance (TEER) values closer to physiological ranges, leads to improved and more reliable permeability outcomes, which are observed when comparing our results with in vivo data.

JTD Keywords: 3d intestinal model, drug absorption, drug development, endothelium, hydrogel, 3d intestinal model, 3d modeling, 3d models, 3d-modeling, Alkaline-phosphatase, Animal experiments, Biopharmaceutics classification, Caco-2 cells, Cell culture, Collagen, Collagen gel, Drug absorption, Drug development, Endothelium, Fibroblasts, Glycoproteins, Hydrogel, In-vitro, Matrix metalloproteinases, Membrane-permeability, Paracellular transport, Permeability, Single-pass vs., Speed up

Dulay, S, Rivas, L, Pla, L, Berdun, S, Eixarch, E, Gratacos, E, Illa, M, Mir, M, Samitier, J, (2021). Fetal ischemia monitoring with in vivo implanted electrochemical multiparametric microsensors Journal Of Biological Engineering 15, 28

Under intrauterine growth restriction (IUGR), abnormal attainment of the nutrients and oxygen by the fetus restricts the normal evolution of the prenatal causing in many cases high morbidity being one of the top-ten causes of neonatal death. The current gold standards in hospitals to detect this relevant problem is the clinical observation by echography, cardiotocography and Doppler. These qualitative techniques are not conclusive and requires risky invasive fetal scalp blood testing and/or amniocentesis. We developed micro-implantable multiparametric electrochemical sensors for measuring ischemia in real time in fetal tissue and vascular. This implantable technology is designed to continuous monitoring for an early detection of ischemia to avoid potential fetal injury. Two miniaturized electrochemical sensors were developed based on oxygen and pH detection. The sensors were optimized in vitro under controlled concentration, to assess the selectivity and sensitivity required. The sensors were then validated in vivo in the ewe fetus model, by means of their insertion in the muscle leg and inside the iliac artery of the fetus. Ischemia was achieved by gradually obstructing the umbilical cord to regulate the amount of blood reaching the fetus. An important challenge in fetal monitoring is the detection of low levels of oxygen and pH changes under ischemic conditions, requiring high sensitivity sensors. Significant differences were observed in both; pH and pO(2) sensors under changes from normoxia to hypoxia states in the fetus tissue and vascular with both sensors. Herein, we demonstrate the feasibility of the developed sensors for future fetal monitoring in medical applications.

JTD Keywords: electrochemical biosensor, implantable sensor, in vivo validation, ischemia detection, tissue and vascular monitoring, Animal experiment, Animal model, Animal tissue, Article, Blood-gases, Brain, Classification, Controlled study, Diagnosis, Doppler, Early diagnosis, Electrochemical analysis, Electrochemical biosensor, Ewe, Feasibility study, Female, Fetus, Fetus disease, Fetus monitoring, Gestational age, Hypoxemia, Iliac artery, Implantable sensor, In vivo validation, Intrauterine growth restriction, Intrauterine growth retardation, Ischemia detection, Leg muscle, Management, Nonhuman, Oxygen consumption, Ph, Ph and oxygen detection, Ph measurement, Process optimization, Sheep, Tissue and vascular monitoring, Umbilical-cord occlusion

Watt, AC, Cejas, P, DeCristo, MJ, Metzger, O, Lam, EYN, Qiu, XT, BrinJones, H, Kesten, N, Coulson, R, Font-Tello, A, Lim, K, Vadhi, R, Daniels, VW, Montero, J, Taing, L, Meyer, CA, Gilan, O, Bell, CC, Korthauer, KD, Giambartolomei, C, Pasaniuc, B, Seo, JH, Freedman, ML, Ma, CT, Ellis, MJ, Krop, I, Winer, E, Letai, A, Brown, M, Dawson, MA, Long, HW, Zhao, JJ, Goel, S, (2021). CDK4/6 inhibition reprograms the breast cancer enhancer landscape by stimulating AP-1 transcriptional activity Nature Cancer 2, 34-+

Goel and colleagues show that CDK4/6 inhibition induces global chromatin changes mediated by AP-1 factors, which mediate key biological and clinical effects in breast cancer. Pharmacologic inhibitors of cyclin-dependent kinases 4 and 6 (CDK4/6) were designed to induce cancer cell cycle arrest. Recent studies have suggested that these agents also exert other effects, influencing cancer cell immunogenicity, apoptotic responses and differentiation. Using cell-based and mouse models of breast cancer together with clinical specimens, we show that CDK4/6 inhibitors induce remodeling of cancer cell chromatin characterized by widespread enhancer activation, and that this explains many of these effects. The newly activated enhancers include classical super-enhancers that drive luminal differentiation and apoptotic evasion, as well as a set of enhancers overlying endogenous retroviral elements that are enriched for proximity to interferon-driven genes. Mechanistically, CDK4/6 inhibition increases the level of several activator protein-1 transcription factor proteins, which are in turn implicated in the activity of many of the new enhancers. Our findings offer insights into CDK4/6 pathway biology and should inform the future development of CDK4/6 inhibitors.

JTD Keywords: Abemaciclib, Androgen receptor, Animal experiment, Animal model, Animal tissue, Apoptosis, Article, Breast cancer, C-jun, Cancer cell, Carcinoembryonic antigen related cell adhesion molecule 1, Caspase 3, Cell cycle arrest, Cells, Chromatin, Chromatin immunoprecipitation, Controlled study, Cyclin dependent kinase 4, Cyclin dependent kinase 6, Dna damage, Epidermal growth factor receptor 2, Estrogen receptor, Female, Flow cytometry, Fulvestrant, Hla drb1 antigen, Human, Human cell, Immunoblotting, Immunogenicity, Immunoprecipitation, Interferon, Luciferase assay, Mcf-7 cell line, Mda-mb-231 cell line, Microarray analysis, Morphogenesis, Mouse, Nonhuman, Palbociclib, Protein, Protein expression, Rb, Resistance, Rna polymerase ii, Rna sequence, Selective-inhibition, Senescence, Short tandem repeat, Signal transduction, Tamoxifen, Transcription elongation, Transcription factor, Transcription factor ap 1, Transcriptome, Tumor biopsy, Tumor differentiation, Tumor spheroid, Tumor xenograft, Vinculin, Whole exome sequencing

Marques, J., Moles, E., Urbán, P., Prohens, R., Busquets, M. A., Sevrin, C., Grandfils, C., Fernàndez-Busquets, X., (2014). Application of heparin as a dual agent with antimalarial and liposome targeting activities toward Plasmodium-infected red blood cells Nanomedicine: Nanotechnology, Biology, and Medicine 10, (8), 1719-1728

Heparin had been demonstrated to have antimalarial activity and specific binding affinity for Plasmodium-infected red blood cells (pRBCs) vs. non-infected erythrocytes. Here we have explored if both properties could be joined into a drug delivery strategy where heparin would have a dual role as antimalarial and as a targeting element of drug-loaded nanoparticles. Confocal fluorescence and transmission electron microscopy data show that after 30. min of being added to living pRBCs fluorescein-labeled heparin colocalizes with the intracellular parasites. Heparin electrostatically adsorbed onto positively charged liposomes containing the cationic lipid 1,2-dioleoyl-3-trimethylammonium-propane and loaded with the antimalarial drug primaquine was capable of increasing three-fold the activity of encapsulated drug in Plasmodium falciparum cultures. At concentrations below those inducing anticoagulation of mouse blood in vivo, parasiticidal activity was found to be the additive result of the separate activities of free heparin as antimalarial and of liposome-bound heparin as targeting element for encapsulated primaquine. From the Clinical Editor: Malaria remains an enormous global public health concern. In this study, a novel functionalized heparin formulation used as drug delivery agent for primaquine was demonstrated to result in threefold increased drug activity in cell cultures, and in a murine model it was able to provide these benefits in concentrations below what would be required for anticoagulation. Further studies are needed determine if this approach is applicable in the human disease as well.

JTD Keywords: Heparin, Liposomes, Malaria, Plasmodium, Targeted drug delivery, Heparin, Malaria, Plasmodium, Red blood cell, Targeted drug delivery, Liposomes, 1,2 dioleoyl 3 trimethylammoniopropane, fluorescein, heparin, liposome, nanoparticle, primaquine, adsorption, animal experiment, anticoagulation, antimalarial activity, Article, binding affinity, confocal microscopy, controlled study, drug targeting, encapsulation, erythrocyte, female, fluorescence microscopy, human, human cell, in vivo study, liposomal delivery, mouse, nonhuman, Plasmodium falciparum, transmission electron microscopy

Dalmases, M., Torres, M., Márquez-Kisinousky, L., Almendros, I., Planas, A. M., Embid, C., Martínez-Garcia, M. A., Navajas, D., Farré, R., Montserrat, J. M., (2014). Brain tissue hypoxia and oxidative stress induced by obstructive apneas is different in young and aged rats Sleep , 37, (7), 1249-1256

Study Objectives: To test the hypotheses that brain oxygen partial pressure (PtO2) in response to obstructive apneas changes with age and that it might lead to different levels of cerebral tissue oxidative stress. Design: Prospective controlled animal study. Setting: University laboratory. Participants: Sixty-four male Wistar rats: 32 young (3 mo old) and 32 aged (18 mo). Interventions: Protocol 1: Twenty-four animals were subjected to obstructive apneas (50 apneas/h, lasting 15 sec each) or to sham procedure for 50 min. Protocol 2: Forty rats were subjected to obstructive apneas or sham procedure for 4 h. Measurements and Results: Protocol 1: Real-time PtO2 measurements were performed using a fast-response oxygen microelectrode. During successive apneas cerebral cortex PtO2 presented a different pattern in the two age groups; there was a fast increase in young rats, whereas it remained without significant changes between the beginning and the end of the protocol in the aged group. Protocol 2: Brain oxidative stress assessed by lipid peroxidation increased after apneas in young rats (1.34 ± 0.17 nmol/mg of protein) compared to old ones (0.63 ± 0.03 nmol/mg), where a higher expression of antioxidant enzymes was observed. Conclusions: The results suggest that brain oxidative stress in aged rats is lower than in young rats in response to recurrent apneas, mimicking obstructive sleep apnea. This could be due to the different PtO2 response observed between age groups and the increased antioxidant expression in aged rats.

JTD Keywords: Aging, Animal model, Obstructive apnea, Oxidative stress, Tissue oxygenation, antioxidant, glutathione disulfide, aged, animal experiment, animal model, animal tissue, apnea, arterial oxygen saturation, article, brain cortex, brain oxygen tension, brain tissue, controlled study, groups by age, hypoxia, lipid peroxidation, male, nonhuman, oxidative stress, pressure, priority journal, rat

Melo, E., Cárdenes, N., Garreta, E., Luque, T., Rojas, M., Navajas, D., Farré, R., (2014). Inhomogeneity of local stiffness in the extracellular matrix scaffold of fibrotic mouse lungs Journal of the Mechanical Behavior of Biomedical Materials , 37, 186-195

Lung disease models are useful to study how cell engraftment, proliferation and differentiation are modulated in lung bioengineering. The aim of this work was to characterize the local stiffness of decellularized lungs in aged and fibrotic mice. Mice (2- and 24-month old; 14 of each) with lung fibrosis (N=20) and healthy controls (N=8) were euthanized after 11 days of intratracheal bleomycin (fibrosis) or saline (controls) infusion. The lungs were excised, decellularized by a conventional detergent-based (sodium-dodecyl sulfate) procedure and slices of the acellular lungs were prepared to measure the local stiffness by means of atomic force microscopy. The local stiffness of the different sites in acellular fibrotic lungs was very inhomogeneous within the lung and increased according to the degree of the structural fibrotic lesion. Local stiffness of the acellular lungs did not show statistically significant differences caused by age. The group of mice most affected by fibrosis exhibited local stiffness that were ~2-fold higher than in the control mice: from 27.2±1.64 to 64.8±7.1. kPa in the alveolar septa, from 56.6±4.6 to 99.9±11.7. kPa in the visceral pleura, from 41.1±8.0 to 105.2±13.6. kPa in the tunica adventitia, and from 79.3±7.2 to 146.6±28.8. kPa in the tunica intima. Since acellular lungs from mice with bleomycin-induced fibrosis present considerable micromechanical inhomogeneity, this model can be a useful tool to better investigate how different degrees of extracellular matrix lesion modulate cell fate in the process of organ bioengineering from decellularized lungs.

JTD Keywords: Ageing, Atomic force microscopy, Decellularization, Lung fibrosis, Tissue engineering, Atomic force microscopy, Biological organs, Peptides, Sodium dodecyl sulfate, Sodium sulfate, Tissue engineering, Ageing, Decellularization, Extracellular matrices, Healthy controls, Inhomogeneities, Lung fibrosis, Micro-mechanical, Statistically significant difference, Mammals, bleomycin, adventitia, animal experiment, animal model, article, atomic force microscopy, bleomycin-induced pulmonary fibrosis, cell fate, controlled study, extracellular matrix, female, intima, lung alveolus, lung fibrosis, lung mechanics, mechanical probe, microenvironment, mouse, nonhuman, pleura, priority journal, rigidity, tissue engineering