DONATE

Publications

by Keyword: Bone marrow

Brennan M, Monahan DS, Brulin B, Gallinetti S, Humbert P, Tringides C, Canal C, Ginebra MP, Layrolle P, (2021). Biomimetic versus sintered macroporous calcium phosphate scaffolds enhanced bone regeneration and human mesenchymal stromal cell engraftment in calvarial defects Acta Biomaterialia 135, 689-704

In contrast to sintered calcium phosphates (CaPs) commonly employed as scaffolds to deliver mesenchymal stromal cells (MSCs) targeting bone repair, low temperature setting conditions of calcium deficient hydroxyapatite (CDHA) yield biomimetic topology with high specific surface area. In this study, the healing capacity of CDHA administering MSCs to bone defects is evaluated for the first time and compared with sintered beta-tricalcium phosphate (β-TCP) constructs sharing the same interconnected macroporosity. Xeno-free expanded human bone marrow MSCs attached to the surface of the hydrophobic β-TCP constructs, while infiltrating the pores of the hydrophilic CDHA. Implantation of MSCs on CaPs for 8 weeks in calvaria defects of nude mice exhibited complete healing, with bone formation aligned along the periphery of β-TCP, and conversely distributed within the pores of CDHA. Human monocyte-osteoclast differentiation was inhibited in vitro by direct culture on CDHA compared to β-TCP biomaterials and indirectly by administration of MSC-conditioned media generated on CDHA, while MSCs increased osteoclastogenesis in both CaPs in vivo. MSC engraftment was significantly higher in CDHA constructs, and also correlated positively with bone in-growth in scaffolds. These findings demonstrate that biomimetic CDHA are favorable carriers for MSC therapies and should be explored further towards clinical bone regeneration strategies. Statement of significance: Delivery of mesenchymal stromal cells (MSCs) on calcium phosphate (CaP) biomaterials enhances reconstruction of bone defects. Traditional CaPs are produced at high temperature, but calcium deficient hydroxyapatite (CDHA) prepared at room temperature yields a surface structure more similar to native bone mineral. The objective of this study was to compare the capacity of biomimetic CDHA scaffolds with sintered β-TCP scaffolds for bone repair mediated by MSCs for the first time. In vitro, greater cell infiltration occurred in CDHA scaffolds and following 8 weeks in vivo, MSC engraftment was higher in CDHA compared to β-TCP, as was bone in-growth. These findings demonstrate the impact of material features such as surface structure, and highlight that CDHA should be explored towards clinical bone regeneration strategies.

JTD Keywords: beta-tricalcium phosphate, bone regeneration, calcium deficient hydroxyapatite, differentiation, engraftment, human bone marrow mesenchymal stromal cells, hydroxyapatite scaffolds, in-vitro, inhibition, osteogenesis, osteoinduction, stem-cells, surface-topography, tissue, Beta-tricalcium phosphate, Bone regeneration, Calcium deficient hydroxyapatite, Engraftment, Human bone marrow mesenchymal stromal cells


Rubi-Sans, G, Cano-Torres, I, Perez-Amodio, S, Blanco-Fernandez, B, Mateos-Timoneda, MA, Engel, E, (2021). Development and Angiogenic Potential of Cell-Derived Microtissues Using Microcarrier-Template Biomedicines 9,

Tissue engineering and regenerative medicine approaches use biomaterials in combination with cells to regenerate lost functions of tissues and organs to prevent organ transplantation. However, most of the current strategies fail in mimicking the tissue's extracellular matrix properties. In order to mimic native tissue conditions, we developed cell-derived matrix (CDM) microtissues (MT). Our methodology uses poly-lactic acid (PLA) and Cultispher(R) S microcarriers' (MCs') as scaffold templates, which are seeded with rat bone marrow mesenchymal stem cells (rBM-MSCs). The scaffold template allows cells to generate an extracellular matrix, which is then extracted for downstream use. The newly formed CDM provides cells with a complex physical (MT architecture) and biochemical (deposited ECM proteins) environment, also showing spontaneous angiogenic potential. Our results suggest that MTs generated from the combination of these two MCs (mixed MTs) are excellent candidates for tissue vascularization. Overall, this study provides a methodology for in-house fabrication of microtissues with angiogenic potential for downstream use in various tissue regenerative strategies.

JTD Keywords: angiogenesis, cell-derived matrix, cultispher® s, microtissue, poly-lactic acid microcarriers, Angiogenesis, Cell-derived matrix, Cultispher (r) s, Microtissue, Poly-lactic acid microcarriers, Rat bone marrow mesenchymal stem cells


Vila, M., García, A., Girotti, A., Alonso, M., Rodríguez-Cabello, J. C., González-Vázquez, A., Planell, J. A., Engel, E., Buján, J., Garcíaa-Honduvilla, N., Vallet-Regí, M., (2016). 3D silicon doped hydroxyapatite scaffolds decorated with Elastin-like Recombinamers for bone regenerative medicine Acta Biomaterialia 45, 349-356

The current study reports on the manufacturing by rapid prototyping technique of three-dimensional (3D) scaffolds based on silicon substituted hydroxyapatite with Elastin-like Recombinamers (ELRs) functionalized surfaces. Silicon doped hydroxyapatite (Si-HA), with Ca10(PO4)5.7(SiO4)0.3(OH)1.7h0.3 nominal formula, was surface functionalized with two different types of polymers designed by genetic engineering: ELR-RGD that contain cell attachment specific sequences and ELR-SNA15/RGD with both hydroxyapatite and cells domains that interact with the inorganic phase and with the cells, respectively. These hybrid materials were subjected to in vitro assays in order to clarify if the ELRs coating improved the well-known biocompatible and bone regeneration properties of calcium phosphates materials. The in vitro tests showed that there was a total and homogeneous colonization of the 3D scaffolds by Bone marrow Mesenchymal Stromal Cells (BMSCs). In addition, the BMSCs were viable and able to proliferate and differentiate into osteoblasts. Statement of Significance Bone tissue engineering is an area of increasing interest because its main applications are directly related to the rising life expectancy of the population, which promotes higher rates of several bone pathologies, so innovative strategies are needed for bone tissue regeneration therapies. Here we use the rapid prototyping technology to allow moulding ceramic 3D scaffolds and we use different bio-polymers for the functionalization of their surfaces in order to enhance the biological response. Combining the ceramic material (silicon doped hydroxyapatite, Si-HA) and the Elastin like Recombinamers (ELRs) polymers with the presence of the integrin-mediate adhesion domain alone or in combination with SNA15 peptide that possess high affinity for hydroxyapatite, provided an improved Bone marrow Mesenchymal Stromal Cells (BMSCs) differentiation into osteoblastic linkage.

JTD Keywords: Bone marrow Mesenchymal Stromal Cells (BMSCs), Bone repair, Elastin-like Recombinamers (ELRs), Rapid prototyped 3D scaffolds, Silicon doped hydroxyapatite (Si-HA), Tissue engineering


Navarro, S., Moleiro, V., Molina-Estevez, F. J., Lozano, M. L., Chinchon, R., Almarza, E., Quintana-Bustamante, O., Mostoslavsky, G., Maetzig, T., Galla, M., Heinz, N., Schiedlmeier, B., Torres, Y., Modlich, U., Samper, E., Río, P., Segovia, J. C., Raya, A., Güenechea, G., Izpisua-Belmonte, J. C., Bueren, J. A., (2014). Generation of iPSCs from genetically corrected Brca2 hypomorphic cells: Implications in cell reprogramming and stem cell therapy Stem Cells , 32, (2), 436-446

Fanconi anemia (FA) is a complex genetic disease associated with a defective DNA repair pathway known as the FA pathway. In contrast to many other FA proteins, BRCA2 participates downstream in this pathway and has a critical role in homology-directed recombination (HDR). In our current studies, we have observed an extremely low reprogramming efficiency in cells with a hypomorphic mutation in Brca2 (Brca2Δ27/Δ27), that was associated with increased apoptosis and defective generation of nuclear RAD51 foci during the reprogramming process. Gene complementation facilitated the generation of Brca2Δ27/Δ27 induced pluripotent stem cells (iPSCs) with a disease-free FA phenotype. Karyotype analyses and comparative genome hybridization arrays of complemented Brca2Δ27/Δ27 iPSCs showed, however, the presence of different genetic alterations in these cells, most of which were not evident in their parental Brca2 Δ27/Δ27 mouse embryonic fibroblasts. Gene-corrected Brca2Δ27/Δ27 iPSCs could be differentiated in vitro toward the hematopoietic lineage, although with a more limited efficacy than WT iPSCs or mouse embryonic stem cells, and did not engraft in irradiated Brca2Δ27/Δ27 recipients. Our results are consistent with previous studies proposing that HDR is critical for cell reprogramming and demonstrate that reprogramming defects characteristic of Brca2 mutant cells can be efficiently overcome by gene complementation. Finally, based on analysis of the phenotype, genetic stability, and hematopoietic differentiation potential of gene-corrected Brca2Δ27/Δ27 iPSCs, achievements and limitations in the application of current reprogramming approaches in hematopoietic stem cell therapy are also discussed.

JTD Keywords: Bone marrow aplasia, Cellular therapy, Fanconi anemia, Gene therapy, Hematopoietic stem cells, Induced pluripotent stem cells


Aguirre, A., Planell, J. A., Engel, E., (2010). Dynamics of bone marrow-derived endothelial progenitor cell/mesenchymal stem cell interaction in co-culture and its implications in angiogenesis Biochemical and Biophysical Research Communications , 400, (2), 284-291

Tissue engineering aims to regenerate tissues and organs by using cell and biomaterial-based approaches. One of the current challenges in the field is to promote proper vascularization in the implant to prevent cell death and promote host integration. Bone marrow endothelial progenitor cells (BM-EPCs) and mesenchymal stem cells (MSCs) are bone marrow resident stem cells widely employed for proangiogenic applications. In vivo, they are likely to interact frequently both in the bone marrow and at sites of injury. In this study, the physical and biochemical interactions between BM-EPCs and MSCs in an in vitro co-culture system were investigated to further clarify their roles in vascularization. BM-EPC/MSC co-cultures established close cell-cell contacts soon after seeding and self-assembled to form elongated structures at 3 days. Besides direct contact, cells also exhibited vesicle transport phenomena. When co-cultured in Matrigel, tube formation was greatly enhanced even in serum-starved, growth factor free medium. Both MSCs and BM-EPCs contributed to these tubes. However, cell proliferation was greatly reduced in co-culture and morphological differences were observed. Gene expression and cluster analysis for wide panel of angiogenesis-related transcripts demonstrated up-regulation of angiogenic markers but down-regulation of many other cytokines. These data suggest that cross-talk occurs in between BM-EPCs and MSCs through paracrine and direct cell contact mechanisms leading to modulation of the angiogenic response.

JTD Keywords: Bone marrow, Endothelial progenitor cell, Co-culture, Mesenchymal stem cell, Angiogenesis


Aguirre, A., Gonzalez, A., Planell, J. A., Engel, E., (2010). Extracellular calcium modulates in vitro bone marrow-derived Flk-1(+) CD34(+) progenitor cell chemotaxis and differentiation through a calcium-sensing receptor Biochemical and Biophysical Research Communications , 393, (1), 156-161

Angiogenesis is a complex process regulated by many cell types and a large variety of biochemical signals such as growth factors, transcription factors, oxygen and nutrient diffusion among others. In the present study, we found out that Flk-1(+) CD34(+) progenitor cells (bone marrow resident cells with an important role in angiogenesis) were responsive to changes in extracellular calcium concentration through a membrane bound, G-protein-coupled receptor sensitive to calcium ions related to the calcium-sensing receptor (CaSR). Calcium was able to induce progenitor cell migration in Boyden chamber experiments and tubulogenesis in Matrigel assays. Addition of anti-CaSR antibodies completely blocked the effect, while CaSR agonist Mg2+ produced a similar response to that of calcium. Real time RT-PCR for a wide array of angiogenesis-related genes showed increased expression of endothelial markers and signaling pathways involved in angiogenesis. These results suggest calcium could be a physiological modulator of the bone marrow progenitor cell-mediated angiogenic response.

JTD Keywords: Endothelial progenitor cell, Calcium-sensing receptor, Angiogenesis, Chemotaxis, Calcium, Bone marrow


Carreras, A., Almendros, I., Acerbi, I., Montserrat, J. M., Navajas, D., Farre, R., (2009). Obstructive apneas induce early release of mesenchymal stem cells into circulating blood Sleep , 32, (1), 117-119

STUDY OBJECTIVES: To investigate whether noninvasive application of recurrent airway obstructions induces early release of mesenchymal stem cells into the circulating blood in a rat model of obstructive sleep apnea. DESIGN: Prospective controlled animal study. SETTING: University laboratory. PATIENTS OR PARTICIPANTS: Twenty male Sprague-Dawley rats (250-300 g). INTERVENTIONS: A specially designed nasal mask was applied to the anesthetized rats. Ten rats were subjected to a pattern of recurrent obstructive apneas (60 per hour, lasting 15 seconds each) for 5 hours. Ten anesthetized rats were used as controls. MEASUREMENTS AND RESULTS: Mesenchymal stem cells from the blood and bone marrow samples were isolated and cultured to count the total number of colony-forming unit fibroblasts (CFU-F) of adherent cells after 9 days in culture. The number of CFU-F from circulating blood was significantly (P = 0.02) higher in the rats subjected to recurrent obstructive apneas (5.00 +/- 1.16; mean +/- SEM) than in controls (1.70 +/- 0.72). No significant (P = 0.54) differences were observed in CFU-F from bone marrow. CONCLUSIONS: Application of a pattern of airway obstructions similar to those experienced by patients with sleep apnea induced an early mobilization of mesenchymal stem cells into circulating blood.

JTD Keywords: Adipocytes/cytology, Animals, Blood Cell Count, Bone Marrow Cells/ cytology, Cell Adhesion/physiology, Cell Count, Cell Differentiation/physiology, Cell Division/physiology, Disease Models, Animal, Fibroblasts/cytology, Male, Mesenchymal Stem Cells/ cytology, Osteocytes/cytology, Rats, Rats, Sprague-Dawley, Sleep Apnea, Obstructive/ blood, Stem Cells/cytology