by Keyword: oxidative stress

El Hauadi K, Resina L, Zanuy D, Esteves T, Ferreira FC, Pérez-Madrigal MM, Alemán C, (2022). Dendritic Self-assembled Structures from Therapeutic Charged Pentapeptides Langmuir 38, 12905-12914

CRENKA [Cys-Arg-(NMe)Glu-Lys-Ala, where (NMe)Glu refers to N-methyl-Glu], an anti-cancer pentapeptide that induces prostate tumor necrosis and significant reduction in tumor growth, was engineered to increase the resistance to endogenous proteases of its parent peptide, CREKA (Cys-Arg-Glu-Lys-Ala). Considering their high tendency to aggregate, the self-assembly of CRENKA and CREKA into well-defined and ordered structures has been examined as a function of peptide concentration and pH. Spectroscopic studies and atomistic molecular dynamics simulations reveal significant differences between the secondary structures of CREKA and CRENKA. Thus, the restrictions imposed by the (NMe)Glu residue reduce the conformational variability of CRENKA with respect to CREKA, which significantly affects the formation of well-defined and ordered self-assembly morphologies. Aggregates with poorly defined morphology are obtained from solutions with low and moderate CREKA concentrations at pH 4, whereas well-defined dendritic microstructures with fractal geometry are obtained from CRENKA solutions with similar peptide concentrations at pH 4 and 7. The formation of dendritic structures is proposed to follow a two-step mechanism: (1) pseudo-spherical particles are pre-nucleated through a diffusion-limited aggregation process, pre-defining the dendritic geometry, and (2) such pre-nucleated structures coalesce by incorporating conformationally restrained CRENKA molecules from the solution to their surfaces, forming a continuous dendritic structure. Instead, no regular assembly is obtained from solutions with high peptide concentrations, as their dynamics is dominated by strong repulsive peptide-peptide electrostatic interactions, and from solutions at pH 10, in which the total peptide charge is zero. Overall, results demonstrate that dendritic structures are only obtained when the molecular charge of CRENKA, which is controlled through the pH, favors kinetics over thermodynamics during the self-assembly process.

JTD Keywords: aggregation, amphiphilic peptides, breast-cancer, cells, design, oxidative stress, resistance, strategy, Molecular-dynamics

Ferrer, I, Andres-Benito, P, Ausin, K, Cartas-Cejudo, P, Lachen-Montes, M, del Rio, JA, Fernandez-Irigoyen, J, Santamaria, E, (2022). Dysregulated Protein Phosphorylation in a Mouse Model of FTLD-Tau Journal Of Neuropathology And Experimental Neurology 81, 696-706

The neocortex of P301S mice, used as a model of fronto-temporal lobar degeneration linked to tau mutation (FTLD-tau), and wild-type mice, both aged 9 months, were analyzed with conventional label-free phosphoproteomics and SWATH-MS (sequential window acquisition of all theoretical fragment ion spectra mass spectrometry) to assess the (phospho)proteomes. The total number of identified dysregulated phosphoproteins was 328 corresponding to 524 phosphorylation sites. The majority of dysregulated phosphoproteins, most of them hyperphosphorylated, were proteins of the membranes, synapses, membrane trafficking, membrane vesicles linked to endo- and exocytosis, cytoplasmic vesicles, and cytoskeleton. Another group was composed of kinases. In contrast, proteins linked to DNA, RNA metabolism, RNA splicing, and protein synthesis were hypophosphorylated. Other pathways modulating energy metabolism, cell signaling, Golgi apparatus, carbohydrates, and lipids are also targets of dysregulated protein phosphorylation in P301S mice. The present results, together with accompanying immunohistochemical and Western-blotting studies, show widespread abnormal phosphorylation of proteins, in addition to protein tau, in P301S mice. These observations point to dysregulated protein phosphorylation as a relevant contributory pathogenic component of tauopathies.

JTD Keywords: (phospho)proteomics, Cytoskeleton, Kinases, Membranes, Networks, Oxidative stress, Pathology, Phosphoproteome analysis, Tau, Tauopathy

Perra, M, Manca, ML, Tuberoso, CIG, Caddeo, C, Marongiu, F, Peris, JE, Orru, G, Ibba, A, Fernandez-Busquets, X, Fattouch, S, Bacchetta, G, Manconi, M, (2022). A green and cost-effective approach for the efficient conversion of grape byproducts into innovative delivery systems tailored to ensure intestinal protection and gut microbiota fortification Innovative Food Science & Emerging Technologies 80, 103103

According to circular economy, wine-making by-products represent a fascinating biomass, which can be used for the sustainable exploitation of polyphenols and the development of new nanotechnological health-promoting products. In this study, polyphenols contained in the grape pomace were extracted by maceration with ethanol in an easy and low dissipative way. The obtained extract, rich in malvidin-3-glucoside, quercetin, pro-cyanidin B2 and gallic acid, was incorporated into phospholipid vesicles tailored for intestinal delivery. To improve their performances, vesicles were enriched with gelatine or a maltodextrin (Nutriose (R)), or their com-bination (gelatine-liposomes, nutriosomes and gelatine-nutriosomes). The small (-147 nm) and negatively charged (--50mV) vesicles were stable at different pH values mimicking saliva (6.75), gastric (1.20) and intestinal (7.00) environments. Vesicles effectively protected intestinal cells (Caco-2) from the oxidative stress and promoted the biofilm formation by probiotic bacteria. A preliminary evaluation of the vesicle feasibility at industrial levels was also performed, analysing the economic and energetic costs needed for their production.

JTD Keywords: Adhesion, Antioxidant activity, Caco-2 cells, Dextrin, Grape pomace extract, Lactobacillus-reuteri, Manufacturing costs, Oxidative stress, Ph, Phospholipid vesicles, Polyphenols, Probiotic bacteria, Protein

Manca ML, Ferraro M, Pace E, Di Vincenzo S, Valenti D, Fernàndez-Busquets X, Peptu CA, Manconi M, (2021). Loading of beclomethasone in liposomes and hyalurosomes improved with mucin as effective approach to counteract the oxidative stress generated by cigarette smoke extract Nanomaterials 11,

In this work beclomethasone dipropionate was loaded into liposomes and hyalurosomes modified with mucin to improve the ability of the payload to counteract the oxidative stress and involved damages caused by cigarette smoke in the airway. The vesicles were prepared by dispersing all components in the appropriate vehicle and sonicating them, thus avoiding the use of organic solvents. Unilamellar and bilamellar vesicles small in size (~117 nm), homogeneously dispersed (polydispersity index lower than 0.22) and negatively charged (~−11 mV), were obtained. Moreover, these vesicle dispersions were stable for five months at room temperature (~25 C). In vitro studies performed using the Next Generation Impactor confirmed the suitability of the formulations to be nebulized as they were capable of reaching the last stages of the impactor that mimic the deeper airways, thus improving the deposition of beclomethasone in the target site. Further, biocompatibility studies performed by using 16HBE bronchial epithelial cells confirmed the high biocompatibility and safety of all the vesicles. Among the tested formulations, only mucin-hyalurosomes were capable of effectively counteracting the production of reactive oxygen species (ROS) induced by cigarette smoke extract, suggesting that this formulation may represent a promising tool to reduce the damaging effects of cigarette smoke in the lung tissues, thus reducing the pathogenesis of cigarette smoke-associated diseases such as chronic obstructive pulmonary disease, emphysema, and cancer. ◦

JTD Keywords: 16hbe cells, beclomethasone, cigarette smoke extract, mucin, oxidative stress, phospholipid vesicles, pulmonary delivery, 16hbe cells, Beclomethasone, Cigarette smoke extract, Mucin, Oxidative stress, Phospholipid vesicles, Pulmonary delivery

Moya-Andérico L, Vukomanovic M, Cendra MdM, Segura-Feliu M, Gil V, del Río JA, Torrents E, (2021). Utility of Galleria mellonella larvae for evaluating nanoparticle toxicology Chemosphere 266,

© 2020 Elsevier Ltd The use of nanoparticles in consumer products is currently on the rise, so it is important to have reliable methods to predict any associated toxicity effects. Traditional in vitro assays fail to mimic true physiological responses of living organisms against nanoparticles whereas murine in vivo models are costly and ethically controversial. For these reasons, this study aimed to evaluate the efficacy of Galleria mellonella as an alternative, non-rodent in vivo model for examining nanoparticle toxicity. Silver, selenium, and functionalized gold nanoparticles were synthesized, and their toxicity was assessed in G. mellonella larvae. The degree of acute toxicity effects caused by each type of NP was efficiently detected by an array of indicators within the larvae: LD50 calculation, hemocyte proliferation, NP distribution, behavioral changes, and histological alterations. G. mellonella larvae are proposed as a nanotoxicological model that can be used as a bridge between in vitro and in vivo murine assays in order to obtain better predictions of NP toxicity.

JTD Keywords: cellular uptake, cytotoxicity, galleria mellonella, gold nanoparticles, hemocytes, nanoparticles, nanotoxicity, non-rodent in vivo model, non-rodent in vivo model, oxidative stress, selenium-compounds, silica nanoparticles, silver nanoparticles, toxicity, toxicity screening, vitro, Galleria mellonella, Hemocytes, In-vivo model, Nanoparticles, Nanotoxicity, Non-rodent in vivo model, Toxicity screening

Tornín J, Villasante A, Solé-Martí X, Ginebra MP, Canal C, (2021). Osteosarcoma tissue-engineered model challenges oxidative stress therapy revealing promoted cancer stem cell properties Free Radical Biology And Medicine 164, 107-118

© 2020 The Author(s) The use of oxidative stress generated by Cold Atmospheric Plasma (CAP) in oncology is being recently studied as a novel potential anti-cancer therapy. However, the beneficial effects of CAP for treating osteosarcoma have mostly been demonstrated in 2-dimensional cultures of cells, which do not mimic the complexity of the 3-dimensional (3D) bone microenvironment. In order to evaluate the effects of CAP in a relevant context of the human disease, we developed a 3D tissue-engineered model of osteosarcoma using a bone-like scaffold made of collagen type I and hydroxyapatite nanoparticles. Human osteosarcoma cells cultured within the scaffold showed a high capacity to infiltrate and proliferate and to exhibit osteomimicry in vitro. As expected, we observed significantly different functional behaviors between monolayer and 3D cultures when treated with Cold Plasma-Activated Ringer's Solution (PAR). Our data reveal that the 3D environment not only protects cells from PAR-induced lethality by scavenging and diminishing the amount of reactive oxygen and nitrogen species generated by CAP, but also favours the stemness phenotype of osteosarcoma cells. This is the first study that demonstrates the negative effect of PAR on cancer stem-like cell subpopulations in a 3D biomimetic model of cancer. These findings will allow to suitably re-focus research on plasma-based therapies in future.

JTD Keywords: 3d tumor model, cancer stem-like cells, cold atmospheric plasma, osteosarcoma, oxidative stress, plasma activated liquids, reactive oxygen and nitrogen species, 3d tumor model, Cancer stem-like cells, Cold atmospheric plasma, Osteosarcoma, Oxidative stress, Plasma activated liquids, Reactive oxygen and nitrogen species

Mateu-Sanz, M, Tornin, J, Ginebra, MP, Canal, C, (2021). Cold Atmospheric Plasma: A New Strategy Based Primarily on Oxidative Stress for Osteosarcoma Therapy Journal Of Clinical Medicine 10,

Osteosarcoma is the most common primary bone tumor, and its first line of treatment presents a high failure rate. The 5-year survival for children and teenagers with osteosarcoma is 70% (if diagnosed before it has metastasized) or 20% (if spread at the time of diagnosis), stressing the need for novel therapies. Recently, cold atmospheric plasmas (ionized gases consisting of UV-Vis radiation, electromagnetic fields and a great variety of reactive species) and plasma-treated liquids have been shown to have the potential to selectively eliminate cancer cells in different tumors through an oxidative stress-dependent mechanism. In this work, we review the current state of the art in cold plasma therapy for osteosarcoma. Specifically, we emphasize the mechanisms unveiled thus far regarding the action of plasmas on osteosarcoma. Finally, we review current and potential future approaches, emphasizing the most critical challenges for the development of osteosarcoma therapies based on this emerging technique.

JTD Keywords: cancer stem cells, cold atmospheric plasma, osteosarcoma, oxidative stress, plasma treated liquids, reactive oxygen and nitrogen species, Antineoplastic activity, Antineoplastic agent, Cancer chemotherapy, Cancer stem cell, Cancer stem cells, Cancer surgery, Cancer survival, Cell therapy, Cold atmospheric plasma, Cold atmospheric plasma therapy, Electromagnetism, Human, In vitro study, Intracellular signaling, Oncogene, Osteosarcoma, Oxidative stress, Plasma treated liquids, Reactive nitrogen species, Reactive oxygen and nitrogen species, Reactive oxygen metabolite, Review, Tumor microenvironment

Manca, M. L., Lattuada, D., Valenti, D., Marelli, O., Corradini, C., Fernàndez-Busquets, X., Zaru, M., Maccioni, A. M., Fadda, A. M., Manconi, M., (2019). Potential therapeutic effect of curcumin loaded hyalurosomes against inflammatory and oxidative processes involved in the pathogenesis of rheumatoid arthritis: The use of fibroblast-like synovial cells cultured in synovial fluid European Journal of Pharmaceutics and Biopharmaceutics 136, 84-92

In the present work curcumin loaded hyalurosomes were proposed as innovative systems for the treatment of rheumatoid arthritis. Vesicles were prepared using a one-step and environmentally friendly method. Aiming at finding the most suitable formulation in terms of size, surface charge and stability on storage, an extensive pre-formulation study was performed using different type and amount of phospholipids. Curcumin loaded vesicles prepared with 180 mg/ml of Phospholipon 90G (P90G) and immobilized with sodium hyaluronate (2 mg/ml) were selected because of their small size (189 nm), homogeneous dispersion (PI 0.24), negative charge (−35 mV), suitable ability to incorporate high amount of curcumin (E% 88%) and great stability on storage. The in vitro study using fibroblast-like synovial cells cultured in synovial fluid, demonstrated the ability of these vesicles to downregulate the production of anti-apoptotic proteins IAP1 and IAP2 and stimulate the production of IL-10, while the production of IL-6 and IL-15 and reactive oxygen species was reduced, confirming their suitability in counteracting pathogenesis of rheumatoid arthritis.

JTD Keywords: Curcumin, IL-6 and IL-15, In vitro inflammation, Oxidative stress, Phospholipid vesicles, Synoviocytes

Manca, M. L., Castangia, I., Zaru, M., Nácher, A., Valenti, D., Fernàndez-Busquets, X., Fadda, A. M., Manconi, M., (2015). Development of curcumin loaded sodium hyaluronate immobilized vesicles (hyalurosomes) and their potential on skin inflammation and wound restoring Biomaterials 71, 100-109

In the present work new highly biocompatible nanovesicles were developed using polyanion sodium hyaluronate to form polymer immobilized vesicles, so called hyalurosomes. Curcumin, at high concentration was loaded into hyalurosomes and physico-chemical properties and in vitro/in vivo performances of the formulations were compared to those of liposomes having the same lipid and drug content. Vesicles were prepared by direct addition of dispersion containing the polysaccharide sodium hyaluronate and the polyphenol curcumin to a commercial mixture of soy phospholipids, thus avoiding the use of organic solvents. An extensive study was carried out on the physico-chemical features and properties of curcumin-loaded hyalurosomes and liposomes. Cryogenic transmission electron microscopy and small-angle X-ray scattering showed that vesicles were spherical, uni- or oligolamellar and small in size (112-220 nm). The in vitro percutaneous curcumin delivery studies on intact skin showed an improved ability of hyalurosomes to favour a fast drug deposition in the whole skin. Hyalurosomes as well as liposomes were biocompatible, protected in vitro human keratinocytes from oxidative stress damages and promoted tissue remodelling through cellular proliferation and migration. Moreover, in vivo tests underlined a good effectiveness of curcumin-loaded hyalurosomes to counteract 12-O-tetradecanoilphorbol (TPA)-produced inflammation and injuries, diminishing oedema formation, myeloperoxydase activity and providing an extensive skin reepithelization. Thanks to the one-step and environmentally-friendly preparation method, component biocompatibility and safety, good in vitro and in vivo performances, the hyalurosomes appear as promising nanocarriers for cosmetic and pharmaceutical applications.

JTD Keywords: Cell oxidative stress, Hyaluronic acid/Hyaluronan, Phospholipid vesicles, Polyphenols, Skin inflammation, Wound healing

Dalmases, M., Torres, M., Márquez-Kisinousky, L., Almendros, I., Planas, A. M., Embid, C., Martínez-Garcia, M. A., Navajas, D., Farré, R., Montserrat, J. M., (2014). Brain tissue hypoxia and oxidative stress induced by obstructive apneas is different in young and aged rats Sleep , 37, (7), 1249-1256

Study Objectives: To test the hypotheses that brain oxygen partial pressure (PtO2) in response to obstructive apneas changes with age and that it might lead to different levels of cerebral tissue oxidative stress. Design: Prospective controlled animal study. Setting: University laboratory. Participants: Sixty-four male Wistar rats: 32 young (3 mo old) and 32 aged (18 mo). Interventions: Protocol 1: Twenty-four animals were subjected to obstructive apneas (50 apneas/h, lasting 15 sec each) or to sham procedure for 50 min. Protocol 2: Forty rats were subjected to obstructive apneas or sham procedure for 4 h. Measurements and Results: Protocol 1: Real-time PtO2 measurements were performed using a fast-response oxygen microelectrode. During successive apneas cerebral cortex PtO2 presented a different pattern in the two age groups; there was a fast increase in young rats, whereas it remained without significant changes between the beginning and the end of the protocol in the aged group. Protocol 2: Brain oxidative stress assessed by lipid peroxidation increased after apneas in young rats (1.34 ± 0.17 nmol/mg of protein) compared to old ones (0.63 ± 0.03 nmol/mg), where a higher expression of antioxidant enzymes was observed. Conclusions: The results suggest that brain oxidative stress in aged rats is lower than in young rats in response to recurrent apneas, mimicking obstructive sleep apnea. This could be due to the different PtO2 response observed between age groups and the increased antioxidant expression in aged rats.

JTD Keywords: Aging, Animal model, Obstructive apnea, Oxidative stress, Tissue oxygenation, antioxidant, glutathione disulfide, aged, animal experiment, animal model, animal tissue, apnea, arterial oxygen saturation, article, brain cortex, brain oxygen tension, brain tissue, controlled study, groups by age, hypoxia, lipid peroxidation, male, nonhuman, oxidative stress, pressure, priority journal, rat

Ramos-Fernández, E., Tajes, M., Palomer, E., Ill-Raga, G., Bosch-Morató, M., Guivernau, B., Román-Dégano, I., Eraso-Pichot, A., Alcolea, D., Fortea, J., Nuñez, L., Paez, A., Alameda, F., Fernàndez-Busquets, X., Lleó, A., Elosúa, R., Boada, M., Valverde, M. A., Muñoz, F. J., (2014). Posttranslational nitro-glycative modifications of albumin in Alzheimer's disease: Implications in cytotoxicity and amyloid-β peptide aggregation Journal of Alzheimer's Disease , 40, (3), 643-657

Glycation and nitrotyrosination are pathological posttranslational modifications that make proteins prone to losing their physiological properties. Since both modifications are increased in Alzheimer's disease (AD) due to amyloid-β peptide (Aβ) accumulation, we have studied their effect on albumin, the most abundant protein in cerebrospinal fluid and blood. Brain and plasmatic levels of glycated and nitrated albumin were significantly higher in AD patients than in controls. In vitro turbidometry and electron microscopy analyses demonstrated that glycation and nitrotyrosination promote changes in albumin structure and biochemical properties. Glycated albumin was more resistant to proteolysis and less uptake by hepatoma cells occurred. Glycated albumin also reduced the osmolarity expected for a solution containing native albumin. Both glycation and nitrotyrosination turned albumin cytotoxic in a cell type-dependent manner for cerebral and vascular cells. Finally, of particular relevance to AD, these modified albumins were significantly less effective in avoiding Aβ aggregation than native albumin. In summary, nitrotyrosination and especially glycation alter albumin structural and biochemical properties, and these modifications might contribute for the progression of AD.

JTD Keywords: Albumin, Alzheimer's disease, amyloid, glycation, nitrotyrosination, oxidative stress

Peñuelas, O., Melo, E., Sánchez, C., Sánchez, I., Quinn, K., Ferruelo, A., Pérez-Vizcaíno, F., Esteban, A., Navajas, D., Nin, N., Lorente, J. A., Farré, R., (2013). Antioxidant effect of human adult adipose-derived stromal stem cells in alveolar epithelial cells undergoing stretch Respiratory Physiology & Neurobiology , 188, (1), 1-8

Introduction: Alveolar epithelial cells undergo stretching during mechanical ventilation. Stretch can modify the oxidative balance in the alveolar epithelium. The aim of the present study was to evaluate the antioxidant role of human adult adipose tissue-derived stromal cells (hADSCs) when human alveolar epithelial cells were subjected to injurious cyclic overstretching. Methods: A549 cells were subjected to biaxial stretch (0-15% change in surface area for 24. h, 0.2. Hz) with and without hADSCs. At the end of the experiments, oxidative stress was measured as superoxide generation using positive nuclear dihydroethidium (DHE) staining, superoxide dismutase (SOD) activity in cell lysates, 8-isoprostane concentrations in supernatant, and 3-nitrotyrosine by indirect immunofluorescence in fixed cells. Results: Cyclically stretching of AECs induced a significant decrease in SOD activity, and an increase in 8-isoprostane concentrations, DHE staining and 3-nitrotyrosine staining compared with non-stretched cells. Treatment with hADSCs significantly attenuated stretch-induced changes in SOD activity, 8-isoprostane concentrations, DHE and 3-nitrotyrosine staining. Conclusion: These data suggest that hADSCs have an anti-oxidative effect in human alveolar epithelial cells undergoing cyclic stretch.

JTD Keywords: Acute lung injury, Cyclic stretch, Human adipose-derived stromal stem cells, Oxidative stress

Almendros, Isaac, Farre, Ramon, Planas, Anna M., Torres, Marta, Bonsignore, Maria R., Navajas, Daniel, Montserrat, Josep M., (2011). Tissue oxygenation in brain, muscle, and fat in a rat model of sleep apnea: Differential effect of obstructive apneas and intermittent hypoxia Sleep , 34, (8), 1127-1133

Study Objectives: To test the hypotheses that the dynamic changes in brain oxygen partial pressure (PtO(2)) in response to obstructive apneas or to intermittent hypoxia differ from those in other organs and that the changes in brain PtO(2) in response to obstructive apneas is a source of oxidative stress. Design: Prospective controlled animal study. Setting: University laboratory. Participants: 98 Sprague-Dawley rats. Interventions: Cerebral cortex, skeletal muscle, or visceral fat tissues were exposed in anesthetized animals subjected to either obstructive apneas or intermittent hypoxia (apneic and hypoxic events of 15 s each and 60 events/h) for 1 h. Measurements and Results: Arterial oxygen saturation (spO(2)) presented a stable pattern, with similar desaturations during both stimuli. The PtO(2) was measured by a microelectrode. During obstructive apneas, a fast increase in cerebral PtO(2) was observed (38.2 +/- 3.4 vs. 54.8 +/- 5.9 mm Hg) but not in the rest of tissues. This particular cerebral response was not found during intermittent hypoxia. The cerebral content of reduced glutathione was decreased after obstructive apneas (46.2% +/- 15.2%) compared to controls (100.0% +/- 14.7%), but not after intermittent hypoxia. This antioxidant consumption after obstructive apneas was accompanied by increased cerebral lipid peroxidation under this condition. No changes were observed for these markers in the other tissues. Conclusions: These results suggest the cerebral cortex could be protected in some way from hypoxic periods caused by obstructive apneas. The increased cerebral PtO(2) during obstructive apneas may, however, cause harmful effects (oxidative stress). The obstructive apnea model appears to be more adequate than the intermittent hypoxia model for studying brain changes associated with OSA.

JTD Keywords: Tissue oxygenation, Obstructive apnea, Intermittent hypoxia, Animal model, Oxidative stress

Valente, T., Gella, A., Fernàndez-Busquets, X., Unzeta, M., Durany, N., (2010). Immunohistochemical analysis of human brain suggests pathological synergism of Alzheimer's disease and diabetes mellitus Neurobiology of Disease , 37, (1), 67-76

It has been extensively reported that diabetes mellitus (DM) patients have a higher risk of developing Alzheimer's disease (AD). but a mechanistic connection between both pathologies has not been provided so far Carbohydrate-derived advanced glycation endproducts (AGEs) have been implicated in the chronic complications of DM and have been reported to play an important role in the pathogenesis of AD. The earliest histopathological manifestation of AD is the apparition of extracellular aggregates of the amyloid beta peptide (A beta). To investigate possible correlations between AGEs and A beta aggregates with both pathologies. we have performed an immuhistochemical study in human post-mortem samples of AD, AD with diabetes (ADD). diabetic and nondemented controls ADD brains showed increased number of A beta dense plaques and receptor for AGEs (RACE)-positive and Tau-positive cells, higher AGEs levels and major microglial activation, compared to AD brain. Our results indicate that ADD patients present a significant increase of cell damage through a RAGE-dependent mechanism, suggesting that AGEs may promote the generation of an oxidative stress vicious cycle, which can explain the severe progression of patients with both pathologies.

JTD Keywords: Abeta, Alzheimer's disease, Rage, Ages, Diabetes, Immunohistochemistry, Advanced glycation endproducts, Beta-amyloid peptide, End-products, Oxidative stress, Advanced glycosylation, Synaptic dysfunction, Cross-linking

Almendros, I., Montserrat, J. M., Torres, M., Gonzalez, C., Navajas, D., Farre, R., (2010). Changes in oxygen partial pressure of brain tissue in an animal model of obstructive apnea Respiratory Research , 11, (3), 1-6

Cognitive impairment is one of the main consequences of obstructive sleep apnea (OSA) and is usually attributed in part to the oxidative stress caused by intermittent hypoxia in cerebral tissues. The presence of oxygen-reactive species in the brain tissue should be produced by the deoxygenation-reoxygenation cycles which occur at tissue level during recurrent apneic events. However, how changes in arterial blood oxygen saturation (SpO(2)) during repetitive apneas translate into oxygen partial pressure (PtO2) in brain tissue has not been studied. The objective of this study was to assess whether brain tissue is partially protected from intermittently occurring interruption of O-2 supply during recurrent swings in arterial SpO(2) in an animal model of OSA. Methods: Twenty-four male Sprague-Dawley rats (300-350 g) were used. Sixteen rats were anesthetized and noninvasively subjected to recurrent obstructive apneas: 60 apneas/h, 15 s each, for 1 h. A control group of 8 rats was instrumented but not subjected to obstructive apneas. PtO2 in the cerebral cortex was measured using a fast-response oxygen microelectrode. SpO(2) was measured by pulse oximetry. The time dependence of arterial SpO(2) and brain tissue PtO2 was carried out by Friedman repeated measures ANOVA. Results: Arterial SpO(2) showed a stable periodic pattern (no significant changes in maximum [95.5 +/- 0.5%; m +/- SE] and minimum values [83.9 +/- 1.3%]). By contrast, brain tissue PtO2 exhibited a different pattern from that of arterial SpO(2). The minimum cerebral cortex PtO2 computed during the first apnea (29.6 +/- 2.4 mmHg) was significantly lower than baseline PtO2 (39.7 +/- 2.9 mmHg; p = 0.011). In contrast to SpO(2), the minimum and maximum values of PtO2 gradually increased (p < 0.001) over the course of the 60 min studied. After 60 min, the maximum (51.9 +/- 3.9 mmHg) and minimum (43.7 +/- 3.8 mmHg) values of PtO2 were significantly greater relative to baseline and the first apnea dip, respectively. Conclusions: These data suggest that the cerebral cortex is partially protected from intermittently occurring interruption of O-2 supply induced by obstructive apneas mimicking OSA.

JTD Keywords: Near-infrared spectroscopy, Sleep-apnea, Iintermittent hypoxia, Cerebral oxygenation, Oxidative stress, Blood-flow, Rat, Apoptosis, Inflammation, Hypercapnia