by Keyword: soft materials

Schamberger, B, Ziege, R, Anselme, K, Ben Amar, M, Bykowski, M, Castro, APG, Cipitria, A, Coles, RA, Dimova, R, Eder, M, Ehrig, S, Escudero, LM, Evans, ME, Fernandes, PR, Fratzl, P, Geris, L, Gierlinger, N, Hannezo, E, Iglic, A, Kirkensgaard, JJK, Kollmannsberger, P, Kowalewska, L, Kurniawan, NA, Papantoniou, I, Pieuchot, L, Pires, THV, Renner, LD, Sageman-Furnas, AO, Schroder-Turk, GE, Sengupta, A, Sharma, VR, Tagua, A, Tomba, C, Trepat, X, Waters, SL, Yeo, EF, Roschger, A, Bidan, CM, Dunlop, JWC, (2023). Curvature in Biological Systems: Its Quantification, Emergence, and Implications across the Scales Advanced Materials 35, 2206110

Surface curvature both emerges from, and influences the behavior of, living objects at length scales ranging from cell membranes to single cells to tissues and organs. The relevance of surface curvature in biology is supported by numerous experimental and theoretical investigations in recent years. In this review, first, a brief introduction to the key ideas of surface curvature in the context of biological systems is given and the challenges that arise when measuring surface curvature are discussed. Giving an overview of the emergence of curvature in biological systems, its significance at different length scales becomes apparent. On the other hand, summarizing current findings also shows that both single cells and entire cell sheets, tissues or organisms respond to curvature by modulating their shape and their migration behavior. Finally, the interplay between the distribution of morphogens or micro-organisms and the emergence of curvature across length scales is addressed with examples demonstrating these key mechanistic principles of morphogenesis. Overall, this review highlights that curved interfaces are not merely a passive by-product of the chemical, biological, and mechanical processes but that curvature acts also as a signal that co-determines these processes.© 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.

JTD Keywords: biological systems, butterfly wing scales, cubic membranes, extracellular-matrix, geometry, mechanotransduction, membrane curvature, morphogenesis, neotissue growth, pattern-formation, soft materials, surface curvature, tissue-growth, Biological systems, Collective cell-migration, Surface curvature

Yazıcı N, Opar E, Kodal M, Tanören B, Sezen M, Özkoç G, (2022). A novel practical approach for monitoring the crosslink density of an ethylene propylene diene monomer compound: Complementary scanning acoustic microscopy and FIB-SEM-EDS analyses Polymers & Polymer Composites 30,

Tuning of the crosslink density (CLD) in the rubber compounds is very crucial for optimizing the physical and mechanical properties of the ultimate rubber products. Conventionally, CLD can be measured via rheological methods such as moving die rheometer (MDR), via mechanical tests such as temperature scanning stress relaxation analysis (TSSR), or via direct swelling experiments using Flory–Rehner approach. In the current study, two novel techniques, focused ion beam - scanning electron microscopy (FIB-SEM) processing, with simultaneous energy dispersive X-ray spectrometry (EDS) mapping analysis and scanning acoustic microscopy (SAM) were combined and correlated to conventional methods on a model recipe of ethylene propylene diene monomer (EPDM) compound having different sulphur contents. Depending on the applied technique, the increase in the crosslink density with sulphur content was found to be 1.7 fold for the Flory–Rehner approach and 1.2 fold for both TSSR and MDR. It is directly monitored from the FIB-SEM-EDS analysis that the sulphur distribution and agglomeration behavior increased in line with ZnO content, which is an indirect indication of the rise in crosslink density. The impedance maps of the crosslinked samples obtained through SAM analysis revealed that the impedance of the samples increased with the increasing sulphur content, which can be attributed to higher level of crosslink density. A quantified correlation was obtained between SAM images and the crosslink density of the samples. It was shown that SAM is a promising tool for practical and non-destructive analysis for determining the formation of crosslink density of the rubbers. © The Author(s) 2022.

JTD Keywords: blends, compressibility, crosslink density, cure characteristics, ethylene propylene diene monomer, focused ion beam, mechanical-properties, morphology, natural-rubber, particles, scanning acoustic microscopy, scanning electron microscopy, sulfur, thermal-stability, vulcanization, Composite soft materials, Cross-link densities, Crosslink density, Crosslinking, Density (specific gravity), Ethylene, Ethylene propylene diene monomer, Flory-rehner, Focused ion beam - scanning electron microscopy, Focused ion beam-scanning electron microscopies, Ii-vi semiconductors, Monomers, Moving die rheometers, Physical and mechanical properties, Propylene, Relaxation analysis, Rubber, Scanning acoustic microscopy, Scanning electron microscopy, Stress relaxation, Sulfur contents, Temperature scanning stress relaxations, Zinc oxide