Formation of iron-rich shelled structures by microbial communities - Fernández-Remolar - 2015 - Journal of Geophysical Research: Biogeoscience...

Abstract

In this paper, we describe the discovery and characterization of shelled structures that occur inside galleries of Pyrenees mines. The structures are formed by the mineralization of iron and zinc oxides, dominantly franklinite ($ZnFe_2O_4$) and poorly ordered goethite (α -FeO(OH)). Subsurface oxidation and hydration of polymetallic sulfide orebodies produce solutions rich in dissolved metal cations including Fe^{2+/3+} and Zn²⁺. The microbially precipitated shell-like structure grows by lateral or vertical stacking of thin laminae of iron oxide particles which are accreted mostly by fungal filaments. The resulting structures are composed of randomly oriented aggregates of needle-like, uniform-sized crystals, suggesting some biological control in the structure formation. Such structures are formed by the integration of two separated shells, following a complex process driven likely by different strategies of fungal microorganisms that produced the complex macrostructure.

Formation of iron-rich shelled structures by microbial communities - Fernández-Remolar - 2015 - Journal of Geophysical Research: Biogeoscience...

Get access to the full text of this article

Provide feedback or get he

» Article Information

DOI

10.1002/2014JG002745

View/save citation

Format Available

Full text: HTML | PDF

©2015. American Geophysical Union. All Rights Reserved.

Request Permissions

Keywords geobiology; microbial mineralization; iron oxides

Publication History

Issue online: 17 February 2015 Version of record online: 28 January 2015 Accepted manuscript online: 7 January 2015 Manuscript Accepted: 28 December 2014 Manuscript Revised: 12 December 2014 Manuscript Received: 9 July 2014

Index terms:

Biomineralization Life in extreme environments Microbe/mineral interactions Astrobiology and extraterrestrial materials Oxidation/reduction reactions

Funded by

- European Research Council. Grant Numbers: ERC-2009-AdG-250350, AYA2011-24803
- Natural Sciences and Engineering Council of Canada (NSERC)
- Canadian Astrobiology Training Programme (CATp)
- Mineralogical Association of Canada

Formation of iron-rich shelled structures by microbial communities - Fernández-Remolar - 2015 - Journal of Geophysical Research: Biogeoscience...

» Supporting Information

Filename

jgrg20331-sup-0001-Supplementary.pdf

PDF document, 1020K

Figures S1–S14

Please note: Wiley-Blackwell is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.

» Related content

Highlights

Highlights are short summaries written by the Eos staff of notable articles selected by the editors and reviewers

Microbial Communities Form Iron Shells in Abandoned Mines

David Shultz, Freelance Writer03 September 2015

High in the Pyrenees Mountains, deep in abandoned mines, scientists discovered peculiar black shells that seem to crop up of their own accord on metal surfaces. These bulbous protrusions coat steel pipes, cables, and rods left behind by the miners, and now researchers think they know why they form.

Through careful analysis of the shells' composition and structure, *Fernández-Remolar et al.* concluded that microbes —fungi primarily—form the shells, depositing iron oxide and other minerals as part of their natural metabolism. The clam-like structures—composed of an upper and lower shell—have a rough symmetry to them and always grow outward from a single point of attachment. Electron microscopy revealed small-scale, fiber-like crystals arranged into lines growing outward from the steel surface. The shells appear to be formed layer by layer, with crystal size and composition varying across layers.

To determine what sorts of microbes might be laying down the mineral layers, scientists used spectrometric techniques in combination with an antibody-covered chip originally designed to search for life on other planets. Specifically, the team analyzed cave environments by testing for 300 different components of microbial cells, such as DNA, proteins, and other biomolecules, to generate a fingerprint of what sort of organisms might be present. The researchers report that fungal filaments, which sequester iron ions from the mine waters, appear to be the dominant players in the shells' formation, especially in the latter stages of development after the base layers have been laid down by bacteria. The result of this complex interplay between microbes and iron-rich water is a rapid biomineralization process that sprouts iron-rich shells from the surface of steel structures.

© 2016 American Geophysical Union

?

AGU Publications AGU.org AGU Membership Author Resources Contact AGU Editor Searches Librarian Resources Media Kits Publication Award Publication Policies Scientific Ethics Submit a Paper Usage Permissions

WILEY

Help & Support About Us Cookies & Privacy Wiley Job Network Terms & Conditions Advertisers & Agents

Powered by Wiley Online Library Copyright © 1999 - 2016 John Wiley & Sons, Inc. All Rights Reserved