Pluripotent stem cells and activation of endogenous tissue programs for organ regeneration


Núria Montserrat Pulido | Junior Group Leader
Elena Garreta Bahima | Senior Researcher
Federico González Grassi | Senior Researcher
Carmen Hurtado Del Pozo | Postdoctoral Researcher
Carolina Tarantino | Senior Technician
Andrés Marco Giménez | PhD Student
Patricia Katherine Prado Peralta | PhD Student
Idoia Lucía Selfa Aspiroz | PhD Student
Laura Clua Ferré | Laboratory Assistant
Mireia Samitier Martí | Laboratory Assistant
Blanca Molins Monteys | Visiting Researcher

About

The generation of induced pluripotent stem cells (iPSCs), especially the generation of patient-derived pluripotent stem cells suitable for disease modelling in vitro, opens the door for the potential translation of stem-cell related studies into the clinic.

Figure 1: A. Representative immunofluorescence image of an organoid at day 25 of differentiation stained for the expression of ECADHERIN (green), WT1 (red) and PODOCALYXIN (yellow). Scale bar, 500 μm.

Successful replacement, or augmentation, of the function of damaged cells by patient derived differentiated stem cells would provide a novel cell-based therapy for diseases. Since iPSCs resemble human embryonic stem cells (hESCs) in their ability to generate cells of three germ layers, patient-specific iPSCs offer definitive solutions for the ethical and histo-incompatibility issues related to hESCs. Indeed human iPSC (hiPSC)-based autologous transplantation is heralded as the future of regenerative medicine.

One of our aims is to generate and correct disease-specific hiPSCs for disease modelling and drug screening. The combination of gene-editing based methodologies together with the development of novel protocols for cell differentiation into relevant tissues/organs, provides a unique scenario for modelling disease progression, and the identification of molecular and cellular mechanisms leading to organ regeneration (Figure 2). In this regard we are particularly interested in generation of transgene-free and disease free patient derived hiPSCs for disease modelling and the discovery of novel therapeutic targets.

Figure 2: Patient induced pluripotent stem cells (iPSCs) represent an unprecedented tool for the generation of in vitro platforms for disease modelling and the definition of protocols for pluripotent stem cells differentiation. Transdifferentiation also offers the possibility to generate auto-compatible cells with no need to undergo to pluripotent stage. In these scenarios the correction of the genetic defect(s) leading to disease may help to understand the molecular and cellular mechanisms driving disease gestation and progression, and more importantly, to identify novel mechanisms leading to organ regeneration. The combination of gene editing methodologies with defined protocols for tissue differentiation helps us to generate in vitro systems for drug screening and disease modelling.

We believe that the recovery of tissue function should not be restricted to the development of cell replacement therapies. In this regard, in our laboratory we take advantage of organisms that possess the ability to regenerate such as zebrafish, in order to understand which molecular and cellular pathways lead to organ regeneration. Surprisingly, studies in neonatal mice have demonstrated that soon after birth this organism posses the capability to regenerate its heart. Taking advantage of such preliminary observations we are translating such analysis in order to understand if the mammalian neonatal kidney still posses the capability to regenerate, and more importantly, if we are able to dissect the epigenetic and cellular mechanisms leading to those responses.

 Lastly, and in an effort to fully develop in vitro and ex vivo platforms for organ regeneration, in our lab we are focused in the development of reporter cell lines for different transcription factors essential for tissue-specific commitment and differentiation (i.e: renal and cardiac lineages). The possibility to combine pluripotent stem cell lines together with decellularized matrices, functionalized biomaterials and ex vivo organoids offers and unprecedented opportunity for the immediate generation of patient-specific in vitro and ex vivo platforms for disease modelling and organ regeneration (Figure 3).

Figure 3: Induced pluripotent stem cells (iPSCs) resemble human embryonic stem cells (hESCs) in their ability to generate cells of the three germ layers of the embryo. This capacity can help us to understand the molecular and cellular cues driving cell fate. Our aim is to generate reporter cell lines from patient iPSCs in order to develop robust protocols for pluripotent stem cells differentiation. Moreover, the combination of patient differentiated populations together with functionalized biomaterials, ex vivo approaches (i.e: organoids), and decellularized tissue matrices, offers and unprecedented strategy for organ regeneration.

News/Jobs

“Más cerca de generar corazones bioartificiales”
29/06/16

An article about Nuria Montserrat appeared in El Mundo on Tuesday following her invovlement in a recent study in which the first human heart grafts from human pluripotent stem cells were generated.


Researchers generate human heart grafts from human pluripotent stem cells
19/05/16

Scientists from IBEC, in collaboration with the Hospital General Universitario Gregorio Marañón in Spain and two other groups in the USA, have made a big leap in heart regeneration advances by achieving heart grafts from human pluripotent stem cells for the first time in less than one month.


Bioenginyeria per fer realitat “L’home de carn”
04/05/15

In the magazine Ara, IBEC group leader Nuria Montserrat and artist Marcel·lí Antúnez, who creates interactive sculpture with organic materials, such as Joan l’Home de Carn, appeared in an article together talking about organ regeneration.


Genetic “editing” a new tool to fight inherited disease
24/04/15

Researchers at the Hospital Clínic, IDIBAPS, the Hospital Sant Joan de Deu and the Institute for Bioengineering of Catalonia (IBEC) have participated in a study, led by Dr. Juan Carlos Izpisúa Belmonte of the Gene Expression Laboratory at California’s Salk Institute, that uses molecular “scissors” to remove mitochondrial mutations in mouse eggs.


“Miniriñones de laboratorio”
10/02/2015

New IBEC group leader Nuria Montserrat is featured in an article in El Mundo.


Projects

EU-funded projects
REGMAMKID How to regenerate the mammalian kidney (2015-2020) European Commission, ERC-StG Nuria Montserrat
National projects
CHONDREG Identification of the epigenetic mechanisms preventing chondrocyte de-differentiation: generation of novel therapeutic strategies for the treatment of cartilage chronic osteochondral lesions CIBER Nuria Montserrat
Infarto de miocardio en jóvenes. Factores epigeneticos y nuevos marcadores de riesgo cardiovascular. Efecto de la modulación de la expresión de microRNAs y long-non coding RNAs ISCIII (Collaborator)
Desarrollo de nuevas estrategias para el tratamiento de la enfermedad renal (2015-2017) MINECO Nuria Montserrat
TRATENFREN Desarrollo de nuevas estrategias para el tratamiento de la enfermedad renal (2015-2017) MINECO, Retos investigación: Proyectos I+D Nuria Montserrat
Regenerative medicine for Fanconi anemia: generation of disease-free patient-specific iPS (2013-2016) Fundació La Marató de TV3 Nuria Montserrat

Publications


Garreta, Elena, Oria, Roger, Tarantino, Carolina, Pla-Roca, Mateu, Prado, Patricia, Fernández-Avilés, Francisco, Campistol, Josep Maria, Samitier, Josep, Montserrat, Nuria, (2017). Tissue engineering by decellularization and 3D bioprinting Materials Today 20, (4), 166-178

Discarded human donor organs have been shown to provide decellularized extracellular matrix (dECM) scaffolds suitable for organ engineering. The quest for appropriate cell sources to satisfy the need of multiple cells types in order to fully repopulate human organ-derived dECM scaffolds has opened new venues for the use of human pluripotent stem cells (hPSCs) for recellularization. In addition, three-dimensional (3D) bioprinting techniques are advancing towards the fabrication of biomimetic cell-laden biomaterial constructs. Here, we review recent progress in decellularization/recellularization and 3D bioprinting technologies, aiming to fabricate autologous tissue grafts and organs with an impact in regenerative medicine.


Garreta, Elena, Marco, Andres, Izpisua Belmonte, Juan Carlos, Montserrat, Nuria, (2016). Genome editing in human pluripotent stem cells: a systematic approach unrevealing pancreas development and disease Stem Cell Investigation 4, (11), 1-4

Although mouse models have represented a major tool for understanding and predicting molecular mechanisms responsible for several human genetic diseases, still species-specific differences between mouse and humans in their biochemical and physiological characteristics represent a major hurdle when translating promising findings into the human setting (1). For instance, in several types of maturity onset diabetes of the young (MODY; autosomal dominant), mice with heterozygous mutations do not develop diabetes (2). In this regard, the derivation of human embryonic stem cells (hESCs) in 1998 represented an unprecedented opportunity for human disease modelling, and a promising source for cell replacement therapies (3). Later on, the possibility to generate patient-derived induced pluripotent stem cells (iPSCs) has opened new venues for the potential translation of stem-cell related studies into the clinic (4).


Garreta, E., de Oñate, L., Fernández-Santos, M. E., Oria, R., Tarantino, C., Climent, A. M., Marco, A., Samitier, M., Martínez, E., Valls-Margarit, M., Matesanz, R., Taylor, D. A., Fernández-Avilés, F., Izpisua Belmonte, J. C., Montserrat, N., (2016). Myocardial commitment from human pluripotent stem cells: Rapid production of human heart grafts Biomaterials 98, 64-78

Genome editing on human pluripotent stem cells (hPSCs) together with the development of protocols for organ decellularization opens the door to the generation of autologous bioartificial hearts. Here we sought to generate for the first time a fluorescent reporter human embryonic stem cell (hESC) line by means of Transcription activator-like effector nucleases (TALENs) to efficiently produce cardiomyocyte-like cells (CLCs) from hPSCs and repopulate decellularized human heart ventricles for heart engineering. In our hands, targeting myosin heavy chain locus (MYH6) with mCherry fluorescent reporter by TALEN technology in hESCs did not alter major pluripotent-related features, and allowed for the definition of a robust protocol for CLCs production also from human induced pluripotent stem cells (hiPSCs) in 14 days. hPSCs-derived CLCs (hPSCs-CLCs) were next used to recellularize acellular cardiac scaffolds. Electrophysiological responses encountered when hPSCs-CLCs were cultured on ventricular decellularized extracellular matrix (vdECM) correlated with significant increases in the levels of expression of different ion channels determinant for calcium homeostasis and heart contractile function. Overall, the approach described here allows for the rapid generation of human cardiac grafts from hPSCs, in a total of 24 days, providing a suitable platform for cardiac engineering and disease modeling in the human setting.

Keywords: Cardiac function, Extracellular matrix, Gene targeting, Pluripotent stem cells


Eguizabal, C., Herrera, L., De Oñate, L., Montserrat, N., Hajkova, P., Izpisua Belmonte, J. C., (2016). Characterization of the epigenetic changes during human gonadal primordial germ cells reprogramming Stem Cells 34, (9), 2418-2428

Abstract: Epigenetic reprogramming is a central process during mammalian germline development. Genome-wide DNA demethylation in primordial germ cells (PGCs) is a prerequisite for the erasure of epigenetic memory, preventing the transmission of epimutations to the next generation. Apart from DNA demethylation, germline reprogramming has been shown to entail reprogramming of histone marks and chromatin remodelling. Contrary to other animal models, there is limited information about the epigenetic dynamics during early germ cell development in humans. Here, we provide further characterization of the epigenetic configuration of the early human gonadal PGCs. We show that early gonadal human PGCs are DNA hypomethylated and their chromatin is characterized by low H3K9me2 and high H3K27me3 marks. Similarly to previous observations in mice, human gonadal PGCs undergo dynamic chromatin changes concomitant with the erasure of genomic imprints. Interestingly, and contrary to mouse early germ cells, expression of BLIMP1/PRDM1 persists in through all gestational stages in human gonadal PGCs and is associated with nuclear lysine-specific demethylase-1. Our work provides important additional information regarding the chromatin changes associated with human PGCs development between 6 and 13 weeks of gestation in male and female gonads.

Keywords: Epigenetic, Human primordial germ cells, Reprograming


Montserrat, N., Garreta, E., Izpisua Belmonte, J. C., (2016). Regenerative strategies for kidney engineering FEBS Journal 283, (18), 3303-3324

The kidney is the most important organ for water homeostasis and waste excretion. It performs several important physiological functions for homeostasis: it filters the metabolic waste out of circulation, regulates body fluid balances, and acts as an immune regulator and modulator of cardiovascular physiology. The development of in vitro renal disease models with pluripotent stem cells (both human embryonic stem cells and induced pluripotent stem cells) and the generation of robust protocols for in vitro derivation of renal-specific-like cells from patient induced pluripotent stem cells have just emerged. Here we review major findings in the field of kidney regeneration with a major focus on the development of stepwise protocols for kidney cell production from human pluripotent stem cells and the latest advances in kidney bioengineering (i.e. decellularized kidney scaffolds and bioprinting). The possibility of generating renal-like three-dimensional structures to be recellularized with renal-derived induced pluripotent stem cells may offer new avenues to develop functional kidney grafts on-demand.

Keywords: Induced pluripotent stem cells, Kidney disease, Kidney engineering, Pluripotent stem cells, Renal differentiation


Vélez, E. J., Lutfi, E., Azizi, S., Montserrat, N., Riera-Codina, M., Capilla, E., Navarro, I., Gutiérrez, J., (2016). Contribution of in vitro myocytes studies to understanding fish muscle physiology Comparative Biochemistry and Physiology, Part - B: Biochemistry and Molecular Biology 199, 67-73

Research on the regulation of fish muscle physiology and growth was addressed originally by classical in vivo approaches; however, systemic interactions resulted in many questions that could be better considered through in vitro myocyte studies. The first paper published by our group in this field was with Tom Moon on brown trout cardiomyocytes, where the insulin and IGF-I receptors were characterized and the down-regulatory effects of an excess of peptides demonstrated. We followed the research on cultured skeletal muscle cells through the collaboration with INRA focused on the characterization of IGF-I receptors and its signaling pathways through in vitro development. Later on, we showed the important metabolic role of IGFs, although these studies were only the first stage of a prolific area of work that has offered a useful tool to advance in our knowledge of the endocrine and nutritional regulation of fish growth and metabolism. Obviously, the findings obtained in vitro serve the purpose to propose the scenario that will need confirmation in vivo, but this technique has made possible many different, easy, fast and better controlled studies. In this review, we have summarized the main advances that the use of cultured muscle cells has permitted, focusing mainly in the role of IGFs regulating fish metabolism and growth. Although many articles have already appeared using this model system in salmonids, gilthead sea bream or zebrafish, it is reasonable to expect new studies with cultured cells using innovative approaches that will help to understand fish physiology and its regulation.

Keywords: Amino acids, IGFs, In vitro cultures, Insulin, Insulin and IGF-I receptors, Myogenesis, Myogenic factors, TOR


Reddy, Pradeep, Ocampo, Alejandro, Suzuki, Keiichiro, Luo, Jinping, Bacman, Sandra , Williams, Sion, Sugawara, Atsushi, Okamura, Daiji, Tsunekawa, Yuji, Wu, Jun, Lam, David, Xiong, Xiong, Montserrat, Nuria, Esteban, Concepcion, Liu, Guang-Hui, Sancho-Martinez, Ignacio, Manau, Dolors, Civico, Salva, Cardellach, Francesc, del Mar O'Callaghan, Maria, Campistol, Jaime, Zhao, Huimin, Campistol, Josep, Moraes, Carlos, Izpisua Belmonte, Juan Carlos, (2015). Selective elimination of mitochondrial mutations in the germline by genome editing Cell 161, (3), 459-469

Mitochondrial diseases include a group of maternally inherited genetic disorders caused by mutations in mtDNA. In most of these patients, mutated mtDNA coexists with wild-type mtDNA, a situation known as mtDNA heteroplasmy. Here, we report on a strategy toward preventing germline transmission of mitochondrial diseases by inducing mtDNA heteroplasmy shift through the selective elimination of mutated mtDNA. As a proof of concept, we took advantage of NZB/BALB heteroplasmic mice, which contain two mtDNA haplotypes, BALB and NZB, and selectively prevented their germline transmission using either mitochondria-targeted restriction endonucleases or TALENs. In addition, we successfully reduced human mutated mtDNA levels responsible for Leber?s hereditary optic neuropathy (LHOND), and neurogenic muscle weakness, ataxia, and retinitis pigmentosa (NARP), in mammalian oocytes using mitochondria-targeted TALEN (mito-TALENs). Our approaches represent a potential therapeutic avenue for preventing the transgenerational transmission of human mitochondrial diseases caused by mutations in mtDNA. Mitochondrial diseases include a group of maternally inherited genetic disorders caused by mutations in mtDNA. In most of these patients, mutated mtDNA coexists with wild-type mtDNA, a situation known as mtDNA heteroplasmy. Here, we report on a strategy toward preventing germline transmission of mitochondrial diseases by inducing mtDNA heteroplasmy shift through the selective elimination of mutated mtDNA. As a proof of concept, we took advantage of NZB/BALB heteroplasmic mice, which contain two mtDNA haplotypes, BALB and NZB, and selectively prevented their germline transmission using either mitochondria-targeted restriction endonucleases or TALENs. In addition, we successfully reduced human mutated mtDNA levels responsible for Leber?s hereditary optic neuropathy (LHOND), and neurogenic muscle weakness, ataxia, and retinitis pigmentosa (NARP), in mammalian oocytes using mitochondria-targeted TALEN (mito-TALENs). Our approaches represent a potential therapeutic avenue for preventing the transgenerational transmission of human mitochondrial diseases caused by mutations in mtDNA.


de Oñate, L., Garreta, E., Tarantino, C., Martínez, E., Capilla, E., Navarro, I., Gutiérrez, J., Samitier, J., Campistol, J.M., Muñoz-Cánovas, P., Montserrat, N., (2015). Research on skeletal muscle diseases using pluripotent stem cells Muscle Cell and Tissue (ed. Sakuma, K.), InTech (Rijeka, Croatia) , 333-357

The generation of induced pluripotent stem cells (iPSCs), especially the generation of patient-derived pluripotent stem cells (PSCs) suitable for disease modelling in vitro, opens the door for the potential translation of stem-cell related studies into the clinic. Successful replacement, or augmentation, of the function of damaged cells by patient-derived differentiated stem cells would provide a novel cell-based therapy for skeletal muscle-related diseases. Since iPSCs resemble human embryonic stem cells (hESCs) in their ability to generate cells of the three germ layers, patient-specific iPSCs offer definitive solutions for the ethical and histo-incompatibility issues related to hESCs. Indeed human iPSC (hiPSC)-based autologous transplantation is heralded as the future of regenerative medicine. Interestingly, during the last years intense research has been published on disease-specific hiPSCs derivation and differentiation into relevant tissues/organs providing a unique scenario for modelling disease progression, to screen patient-specific drugs and enabling immunosupression-free cell replacement therapies. Here, we revise the most relevant findings in skeletal muscle differentiation using mouse and human PSCs. Finally and in an effort to bring iPSC technology to the daily routine of the laboratory, we provide two different protocols for the generation of patient-derived iPSCs.

Keywords: Pluripotent stem cells, Myogenic differentiation, Disease modelling, Patient-specific induced pluripotent stem cells, Muscular dystrophy



Equipment

  • Real Time QuantStudio 5
  • SimpliAmp thermocycler
  • Eppendorf 5415D centrifuge
  • Allegra X-15 R centrifuge
  • Gyrozen 1248 centrifuge
  • BioUltra 6 Telstar culture Hood 2x
  • AH-100 Telstar primary culture Hood
  • Binder CB 60 incubators 2x
  • Controltecnica ASTEC SCA 165 incubator
  • Controltecnica ZC 180 incubator
  • Bioruptor Pico sonicator
  • Thermomixer C thermal block
  • Leica DMS1000 and DMIL Led microscopes
  • Leica DMi1 microscope
  • Leica MZ 10F magnifying glass
  • Safe Imager 2.0 transilluminator

Collaborations

  • Juan Carlos Izpisua Belmonte
    Salk Institute for Biological Studies
  • Dr. Josep Maria Campistol Plana
    Experimental Laboratory of Nephrology and Transplantation, Hospital Clínic, Barcelona
  • Peter Hohestein
    The Roslin Institute, University of Edinburgh
  • Dr. Pere Gascón Vilaplana
    Head of Oncology Service/Molecular and Translational Oncology Laboratory, IDIBAPS
  • Gloria Calderon
    Embryotools SL
  • Pura Muñoz Cánovas
    Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra
  • Dr. Pedro Guillén
    Director Clínica Cemtro, Madrid
  • Dr. Francisco Fernández Avilés
    Head of Cardiology Service, Hospital General Universitario Gregorio Marañón, Madrid
  • Dr María Eugenia Fernández
    Unit of Cell Production, Hospital Gregorio Marañón, Madrid
  • Joaquin Gutiérrez Fruitós
    University of Barcelona
  • Dr. Elena Martínez
    Biomimetic systems for cell engineering, IBEC
  • Dr. Cristina Eguizabal  Argaiz
    Centro Vasco de Transfusion y Tejidos Humanos (CVTTH), Bizkaia

Los comentarios están cerrados