DONATE

Nanobioengineering

About

The Nanobioengineering group is a truly multidisciplinary team composed by researchers coming from very diverse backgrounds working together in applying nanotechnology for the development of new biomedical systems and devices, mainly for diagnostic purposes, and integrated microfluidic Organ-on-Chip devices for the study of organ physiology, disease etiology, or drug screening.

The goal is to fabricate microsystems containing living cells that recapitulate tissue and organ level functions in vitro and new portable diagnosis devices that can be used as Point-of-Care systems.

The main research activities of the group include the engineering and biochemical functionalization of biomaterials integrated with microfluidics systems. The bioengineered microdevices are used to study cell responses to biomolecular compounds applied to Organ-on-Chip devices, or for the development of new lab-on-a-chip based biosensors.

The projects carried out by the group are focused on clinical and industrial problems and are related to three convergent research lines:

1. Biosensors and Lab-on-a-Chip devices for clinical diagnosis and monitoring
  • DNA sensors-arrays integrated in lab-on-a-chip for portable point of care diagnosis
  • Vascular implantable sensors for circular cancer biomarker detection.
  • Antibody-based sensors for pathogenic microorganisms’ detection and neurodegenerative early detection
  • Implantable physiological sensors-array for tissue in vivo hypoxia and ischemia monitoring.
  • 3D printing microfluidic technology.
  • Microfluidic chip using hydrodynamic forces for cell counting and sorting. Application for detection of circulating tumours cells (CTCs).
2. Nanotechnology applied to biomolecule interaction studies and micro/nano-environments for regenerative medicine applications
  • Development of bioengineered 2D and 3D micro/nanoenvironments with a topography and chemical composition controlled at the nanoscale for cell behavior studies (adhesion, proliferation, differentiation). Application to musculoskeletal system regeneration.
  • Biophysical description of cellular phenomena (adhesion, cell migration, differentiation) using micro/nanotechnologies, cell biology tools and soft matter physics.
  • Study of biological mechanisms at single molecule level.
  • Study of magnetite nanoparticles – Amyloid-Beta interaction in Alzheimer disease.
3. Microfluidic systems for biological studies and Organ-on-Chip devices
  • Microfluidic chip for blood/plasma filtering and anemia diseases characterization
  • Spleen-on-a-chip development.
  • Nanoporous-based systems for kidney-on–a-chip developments.
  • Engineering microfluidic platforms for neurobiological studies.
  • Development of 3D neuromuscular tissue models for soft robotics and clinical applications
  • Microfluidic system to monitor cancer therapy response. Tumor Cancer on a chip in vitro development.
  • Microfluidic vessel on-a-chip for screening drug delivery systems.

Staff

Projects

NATIONAL PROJECTSFINANCERPI
BASE3D (2019-2022)RIS3CAT Tecnologies EmergentsJosep Samitier
PREMED Desarrollo de un ensayo microfluídico funcional en células para el tratamiento personalizado contra el cáncer (2019-2022)MICIU: Retos investigaciónJoan Montero
Sistema microfisiológico para mimetizar las barreras hemato-sistema nervioso central: aplicación a la esclerosis lateral amiotrófica (2019-2022)MICIU: Retos investigaciónAnna Lagunas
BATMAN Nanopartículas biomiméticas para el tratamiento dirigido del neuroblastoma pediátrico (2021-2023)MICIU, Retos investigación: Proyectos I+D. Aranzazu Villasante
Neuroblastoma en un chip para investigar la resistencia a fármacos y el uso de nanopartículas terapéuticas (2018-2022)Asociación Española contra el Cáncer (AECC)Aranzazu Villasante
Evaluación Funcional de respuesta celular a la quimioterapia neoadyuvante en Sarcoma de tejido blando (2021-2024)Fundación Mari Paz Jiménez Casado (FMPJC), Beca Trienal FMPJC Investigación SarcomasJoan Montero
INTERNATIONAL PROJECTSFINANCERPI
ASCTN-Training Training on Advanced Stem Cell Technologies in Neurology (2018-2022)European Comission Marie Curie ITNJosep Samitier
EVIDENCE Erythrocytes properties and viability in dependence of flow and extra-cellular environment (2020-2023)European Comission Marie Curie ITNJosep Samitier
PANDORA Pandemics Outbreaks Rationalized: towards a universal therapy to eliminate intracellular pathogens (2020-2025)European Commission, ERC – StG Josep Samitier
BEST Postdoctoral Programme in Bioengineering Excellence Scientific Training (2017-2022)European Commission, COFUND – Marie Sklodowska-Curie Co-funding of regional, national and international programmes Josep Samitier
SCIFI From Scientists to Innovators for Industry (2022-2024)EIT Health, EITHealth BP2022 Education Josep Samitier
PRIVATELY-FUNDED PROJECTSFINANCERPI
Descubrimiento de nuevos marcadores terapéuticos en neuroblastoma mediante la generación de modelos basados en técnicas de ingeniería de cáncer (2021-2023)Associació pacients NENJosep Samitier /Aranzazu Villasante
Understanding and measuring mechanical tumor properties to improve cancer diagnosis, treatment, and survival: Application to liquid biòpsies (2017-2022)Obra Social La CaixaJosep Samitier
BCNatal Artificial Placenta Project (2021-2022)Obra Social La CaixaMaria José López
Descubrimiento de nuevos marcadores terapéuticos en neuroblastoma mediante la generación de modelos basados en técnicas de ingeniería de cáncer (2021-2023)Associació pacients NENAranzazu Villasante
FINISHED PROJECTSFINANCERPI
Personalizing pediatric cancer treatment with kinome analyses, cell-based funcional assays and microfluidics (2017-2021)CELLEXJosep Samitier / Joan Montero
ISCHEMSURG Miniaturized electrochemical sensor for monitoring of free flap ischemia in post-surgery (2019-2021)AGAURJosep Samitier
Joint Programme – Healthy Ageing (2016)Obra Social “La Caixa”Josep Samitier
PLANTOID Innovative Robotic Artefacts Inspired by Plant Roots for Soil MonitoringICTJosep Samitier
Universal diagnostic platforms based on oligonucleotide cofidied nanoparticles and DNA microarray sensor devicesMINECO, I+D-Investigación fundamental no orientadaJosep Samitier
ELECTRA-G (2014-2016)Conveni GENOMICA S.A.U.Josep Samitier
Desarrollo de una nueva tecnología lab-on-a-chip para la detección y cuantificación de secuencias de ADN/ARN (2014-2016)Conveni GENOMICA S.A.U.Josep Samitier
BIOBOT Engineered biological soft robots based on neuro-muscular junction control (2015-2018)MINECO, Proyectos EXPLORA Ciencia / Tecnología 2015Josep Samitier
Advancecat Acceleradora pel desenvolupament de teràpies avançades
ACCIÓ / Smart Specialization funds (RIS3)Josep Samitier
MINDS Plataforma MIcrofluídica 3D de cultivo Neuronal compartimentada para el estuDio de enfermedades neurológicaS (2016-2018)MINECO, Proyectos I+D ExcelenciaJosep Samitier
nanoET-leukemia Nanoconductance of electron transfer proteins of the respiratory chain. Direct measurementat the single molecular level and therapeutic regulation in cancer stem cells (2015-2018)MINECO, Proyectos RETOS 2015 / CIBERAnna Lagunas / Marina Giannotti
Desenvolupar un sistema d’assistència robòtica per medicina i cirurgia fetal (2016-2019)CELLEXJosep Samitier
Monitoring neurocognitive deficits in Alzheimer’s and Parkinson’s diseases using saliva or blood-derived biomarkers and a multiplexed approach (2016-2018)Obra Social “La Caixa”Josep Samitier
ISCHEMSURG Miniaturized electrochemical sensor for monitoring of free flap ischemia in post-surgery (2019-2020)CaixaImpulseMonica Mir
Personalizing Melanoma Treatment Using Dynamic BH3 Profiling (2018-2020)Dana-Farber Cancer InstitutJoan Montero
NANOVAX Nanovacunas diseñadas para inmunoterapia antitumoral (2016-2020)EuroNanoMed (ERA-Net)Josep Samitier
Understanding and measuring mechanical tumor properties to improve cancer diagnosis, treatment, and survival: Application to liquid biopsies (2017-2020)Obra Social “La Caixa”Josep Samitier
Personalizing pediatric cancer treatment (2018-2020)Fundación FEROJoan Montero

Publications

Equipment

Nanofabrication and nanomanipulation

  • 3D Printing system for microfluidic devices
  • Graphtech

Characterization

  • Potentiostates
  • Optical Waveguide Lightmode Spectroscope (OWLS)
  • Atomic Force Microscope (AFM)
  • Optical Microscopes (white light/epifluorescence)
  • Electrical Impedance spectroscopy (EIS)
  • Multi-frequency Lock-in Amplifier
  • Sub-femtoamp Remote SourceMeter Instrument

Molecular/cell biology

  • Biological safety cabinet (class II)
  • Microwell plate readers
  • Protein and DNA electrophoresis systems
  • Microincubator Okolab
  • Nanodrop spectrophotometer
  • CO2 incubator for cells: Galaxy® 48 S, 48 L, 230 V/50/60 Hz, standard
  • Cell culture cabin: Bioii-Advance 3

Microfluidics

  • High precision syringe pumps
  • Peristaltic pumps

Collaborations

  • Prof. Fernando Albericio
    Institut de Recerca Biomédica (IRB), Barcelona, Spain
  • Dr. José Antonio Andrades
    Universidad de Málaga, Spain
  • Prof. Ezequiel Pérez
    Inestrosa Centro Andaluz de Nanomedicina y Biotecnología (BIONAND), Málaga, Spain
  • Prof. Joan Bausells
    Centro Nacional de Microelectrónica (CNM-CSIC), Barcelona
  • Prof. Albert van den Berg
    University of Twente, The Netherlands
  • Prof. Andre Bernard
    Institut für Mikro- und Nanotechnologie (MNT-NTB), Buchs, Switzerland
  • Prof. H. Börner
    Max Planck Institute of Colloids and Interfaces, Golm, Germany
  • Prof. Josep Maria Canals
    University of Barcelona, Spain
  • Dr. Matthew Dalby
    University of Glasgow, UK
  • Prof. Paolo Dario
    Scuola Superiore Sant’Anna (SSSA), Pontedera, Italy
  • Prof. Ramón Eritja
    Institut de Recerca Biomédica (IRB), Barcelona, Spain
  • Prof. E. Faszewski
    Wheelock College, Boston, USA
  • Prof. G. Fuhr
    FhG Biomedicine, St. Ingbert, Germany
  • Dr. Juan C. Izpisúa
    Salk Institute for Biological Studies, La Jolla, California
  • Dr. Nicole Jaffrezic
    Université Claude Bernard Lyon 1, France
  • Dr. Graham Johnson
    Uniscan Instruments Ltd, Buxton, UK
  • Dr. Mª Pilar Marco
    Institute of Chemical and Environmental Research, Barcelona
  • Prof. Jean-Louis Marty
    Université de Perpignan Via Domitia, France
  • Prof. Barbara Mazzolai
    IIT Center for Micro-BioRobotics (CMBR), Pontedera, Italy
  • Dr. Edith Pajot
    Biology of Olfaction and Biosensors group (BOB) at INRA, Jouy-en-Josas, France
  • Dr. M. Lluïssa Pérez
    Dept. Farmacología, University of Barcelona, Spain
  • Dr. Hernando del Portillo
    Centro de Investigación en Salud Internacional de Barcelona (CRESIB), Barcelona, Spain
  • Dr. Jaume Reventós
    Hospital Vall d’Hebrón, Barcelona, Spain
  • Prof. L. Reggiani
    Nanotechnology Laboratory, INFM, Lecce, Italy
  • Prof. Daniel Riveline
    Laboratory of Cell Physics ISIS/IGBMC, Strasbourg
  • Prof. M. Sampietro
    Politecnico di Milano, Italy
  • Prof. Molly M. Stevens
    Imperial College, London, UK
  • Dr. Christophe Vieu
    Laboratoire d’analyse et d’architectures des systèmes (LAAS-CNRS), Toulouse, France
  • Prof. Pau Gorostiza
    IBEC
  • Prof. Irene Díaz Moreno
    3IIQ-cicCartuja, Universidad de Sevilla-CSIC, Spain
  • Prof. Miguel A. de la Rosa
    3IIQ-cicCartuja, Universidad de Sevilla-CSIC, Spain
  • Dr. María del Mar Mañú Pereira
    Josep Carreras Leukaemia Research Institute, Barcelona, Spain
  • Dr. Joan Lluis Vives
    Josep Carreras Leukaemia Research Institute, Barcelona, Spain

Industry partners:

  • Biokit S.A. (Werfen group); Genomica S.A.U. (Zeltia group); Tallers Fiestas S.L.; Enantia S.L.; Microfluidic ChipShop GmbH; Minifab; Microliquid

News

L’Institut de Bioenginyeria de Catalunya (IBEC) aportarà la seva àmplia experiència en impressió i bioimpressió 3D a la comunitat BASE 3D, una entitat que agrupa centres de recerca de tot Catalunya amb l’objectiu de potenciar l’R+D+I en el camp de la impressió 3D. Els grups dirigits per Josep Samitier, Elisabeth Engel, Núria Montserrat i Javier Ramón a l’IBEC se sumen al projecte BASE3D.

L’IBEC se suma a la comunitat BASE3D per a contribuir al futur de la impressió 3D

L’Institut de Bioenginyeria de Catalunya (IBEC) aportarà la seva àmplia experiència en impressió i bioimpressió 3D a la comunitat BASE 3D, una entitat que agrupa centres de recerca de tot Catalunya amb l’objectiu de potenciar l’R+D+I en el camp de la impressió 3D. Els grups dirigits per Josep Samitier, Elisabeth Engel, Núria Montserrat i Javier Ramón a l’IBEC se sumen al projecte BASE3D.

IBEC researcher Joan Montero authors a paper in Nature Communications which uncovers a key adaptation that melanoma cancer cells use to evade current therapies. This finding might allow physicians to use better drug combinations to improve patient outcomes in the future. Despite significant advances in cancer diagnosis and treatment, most targeted cancer therapies fail to achieve complete tumor regressions or durable remission. Understanding why these treatments are not always efficient has remained a main challenge for researchers and physicians. Now, Joan Montero from the IBEC and colleagues at Dana-Farber Cancer Institute/Harvard Medical School in USA report in Nature Communications a mechanism that uncovers why some therapies fail to treat melanoma.

Joan Montero and colleagues in Boston suggest a new strategy for melanoma patients

IBEC researcher Joan Montero authors a paper in Nature Communications which uncovers a key adaptation that melanoma cancer cells use to evade current therapies. This finding might allow physicians to use better drug combinations to improve patient outcomes in the future. Despite significant advances in cancer diagnosis and treatment, most targeted cancer therapies fail to achieve complete tumor regressions or durable remission. Understanding why these treatments are not always efficient has remained a main challenge for researchers and physicians. Now, Joan Montero from the IBEC and colleagues at Dana-Farber Cancer Institute/Harvard Medical School in USA report in Nature Communications a mechanism that uncovers why some therapies fail to treat melanoma.

L’investigador de l’IBEC Loris Rizzello rep 1,5 milions d’Euros de la prestigiosa beca ERC Starting Grant pel seu projecte PANDORA, enfocat a crear una nova teràpia per eradicar la tuberculosi. El passat 3 de setembre es van donar a conèixer els projectes seleccionats pel Consell Europeu de Recerca (ERC en anglès) que es beneficiaran d’una ajuda competitiva “Starting Grant”. Entre els 408 projectes seleccionats es troba el projecte PANDORA del Dr. Loris Rizzello, investigador del grup de Nanobioenginyeria de l’IBEC, liderat pel Prof. Josep Samitier. El projecte PANDORA del Dr. Rizzello proposa revolucionar la manera en què curem les infeccions causades per patògens intracel·lulars, amb l’objectiu de trobar una teràpia universal per atacar les malalties infeccioses, i que també contraresti el desenvolupament de la resistència als antibiòtics. Més concretament, el projecte guanyador de la prestigiosa ERC Starting Grant buscarà solucions que ajudin a erradicar la tuberculosi, una de les pitjors pandèmies fins ara, identificant el «codi de barres» molecular de les cèl·lules infectades, per tal de dissenyar nanopartícules polimèriques que ataquin selectivament les cèl·lules infectades, sense afectar a la cèl·lules sanes.

Investigador de l´IBEC rep una ERC Starting Grant per lluitar contra la tuberculosi

L’investigador de l’IBEC Loris Rizzello rep 1,5 milions d’Euros de la prestigiosa beca ERC Starting Grant pel seu projecte PANDORA, enfocat a crear una nova teràpia per eradicar la tuberculosi. El passat 3 de setembre es van donar a conèixer els projectes seleccionats pel Consell Europeu de Recerca (ERC en anglès) que es beneficiaran d’una ajuda competitiva “Starting Grant”. Entre els 408 projectes seleccionats es troba el projecte PANDORA del Dr. Loris Rizzello, investigador del grup de Nanobioenginyeria de l’IBEC, liderat pel Prof. Josep Samitier. El projecte PANDORA del Dr. Rizzello proposa revolucionar la manera en què curem les infeccions causades per patògens intracel·lulars, amb l’objectiu de trobar una teràpia universal per atacar les malalties infeccioses, i que també contraresti el desenvolupament de la resistència als antibiòtics. Més concretament, el projecte guanyador de la prestigiosa ERC Starting Grant buscarà solucions que ajudin a erradicar la tuberculosi, una de les pitjors pandèmies fins ara, identificant el «codi de barres» molecular de les cèl·lules infectades, per tal de dissenyar nanopartícules polimèriques que ataquin selectivament les cèl·lules infectades, sense afectar a la cèl·lules sanes.

Investigadors de l’Institut de Bioenginyeria de Catalunya (IBEC) han publicat un estudi a la revista Nature Communications que revela que la transferència d’electrons pot tenir lloc mentre la proteïna s’apropa a la seva proteïna complementaria, i no només quan aquestes ja hi estan unides, com es pensava fins ara. Aquests resultats obren la porta a una nova forma de considerar com interactuen les proteïnes i pot tenir implicacions per entendre millor molts altres processos, com ara la fotosíntesi, la respiració o la desintoxicació, en els quals la transferència d’electrons juga un paper important. La reubicació d’un electró des d’una entitat química a una altra —la transferència d’electrons (TE)—, no té lloc de forma passiva, sinó que els electrons són transportats de forma individual per les proteïnes redox.

Les proteïnes poden transferir electrons a distància

Investigadors de l’Institut de Bioenginyeria de Catalunya (IBEC) han publicat un estudi a la revista Nature Communications que revela que la transferència d’electrons pot tenir lloc mentre la proteïna s’apropa a la seva proteïna complementaria, i no només quan aquestes ja hi estan unides, com es pensava fins ara. Aquests resultats obren la porta a una nova forma de considerar com interactuen les proteïnes i pot tenir implicacions per entendre millor molts altres processos, com ara la fotosíntesi, la respiració o la desintoxicació, en els quals la transferència d’electrons juga un paper important. La reubicació d’un electró des d’una entitat química a una altra —la transferència d’electrons (TE)—, no té lloc de forma passiva, sinó que els electrons són transportats de forma individual per les proteïnes redox.

Els grups Smart-Nano-Bio-Devices i Nanobioengineering de l’IBEC s’han unit per resoldre el problema del moviment aleatori de micro i nanomotors. El grup del Samuel Sánchez ha seguit avançant en la creació de micro i nanodispositius autopropulsats en els darrers anys. Aquests ‘nedadors’ autopropulsats per reaccions catalítiques en fluids, que podrien ser els fluids del nostre cos o simplement aigua, tenen un gran potencial en aplicacions com el subministrament dirigit de medicaments, la recuperació mediambiental o com a elements de subministrament i recuperació en dispositius lab-on-a-xip.

Inspirant-se en la caixa d’eines d’un fuster

Els grups Smart-Nano-Bio-Devices i Nanobioengineering de l’IBEC s’han unit per resoldre el problema del moviment aleatori de micro i nanomotors. El grup del Samuel Sánchez ha seguit avançant en la creació de micro i nanodispositius autopropulsats en els darrers anys. Aquests ‘nedadors’ autopropulsats per reaccions catalítiques en fluids, que podrien ser els fluids del nostre cos o simplement aigua, tenen un gran potencial en aplicacions com el subministrament dirigit de medicaments, la recuperació mediambiental o com a elements de subministrament i recuperació en dispositius lab-on-a-xip.

1 6 7 8

Jobs