About
Every time we blink, move a hand, draw a breath, or walk, cells in our body exert, transmit, withstand, and detect forces. This mechanical interaction with the environment determines how cells proliferate, differentiate, and move, and regulates development, tumorigenesis or wound healing.
Our research aims precisely at unraveling the mechanisms that these molecules use to detect and respond to mechanical stimuli like forces or tissue rigidity, triggering downstream cell responses.
Just like biochemical stimuli initiate signaling cascades, mechanical forces affect the links and conformation of a network of molecules connecting cells to the extracellular matrix.
To this end, we combine biophysical techniques like magnetic and optical tweezers, Atomic Force Microscopy, traction microscopy, and microfabricated force sensors with molecular biology, advanced optical microscopy, and theoretical modelling.
Sensing the environment: Using this multi-disciplinary approach, we have unveiled a molecular mechanism that cells employ to detect and respond to the rigidity of their environment, which could be crucial in breast tissue and breast cancer (Elosegui-Artola et al., 2016 Nat. Cell Biol., and Elosegui-Artola et al. 2014, Nature Mater.). This mechanism is mediated by what is known as a “molecular clutch”: in a surprising analogy with a car engine, cells can be understood as a molecular network that can engage and disengage from its environment, just as the clutch of a car. This affects force transmission from the environment to cells, and also within different cell components. We are also expanding on the idea of the molecular clutch, to explore how cell molecular engines sense not only mechanical rigidity, but other important parameters from their environment: for instance, the composition and distribution of ligands in the extracellular matrix, or other cells. In this regard, we uncovered that this concept can explain how cells sense the spatial distribution of ligands in the extracellular matrix (Oria et al., Nature 2017). We have also demonstrated that cell-cell force transmission, mediated by a molecular clutch, is essential for cells to sense gradients in stiffness (Sunyer et al., Science 2016, in collaboration with the group of Xavier Trepat).
Nuclear mechanotransduction: Forces applied to cells are transmitted all the way to the cell nucleus, where they affect its function. We are studying how this force transmission affects the dynamics of transcriptional regulators, such as YAP (Elosegui-Artola et al., 2017, Cell), and how this affects cell function.
The membrane as a mechanosensor: Due to its mechanical properties, the plasma membrane itself can respond to forces and act as a mechanosensor. Recently, we have shown that cell membranes can use purely physical principles to adapt their shape in response to mechanical forces (Kosmalska et al., 2015, Nat. Commun.). We are currently studying how cells harness this physical membrane behavior to respond to signals from their environment.
Ultimately, when we determine the molecular mechanisms that communicate cells with their environment, we will understand how forces determine development when things go right, and tumor formation when they go wrong.


Video: How tissue stiffness activates cancer
Staff
Projects
NATIONAL PROJECTS | FINANCER | PI |
---|---|---|
MECNUC · Estudio del control mecánico de la localización nuclear de proteínas (2020-2023) | MINECO Retos investigación: Proyectos I+D | Pere Roca-Cusachs |
BLOCMEC Development of small molecules to block mechanotransduction for pancreatic cancer therapy (2021-2023) | MICIU, Proyectos Pruebas de Concepto | Pere Roca-Cusachs |
INTROPY INhibiting mechanoTRansduction for Oncology theraPY (2021-2023) | ACCIO, Tecniospring Industry | Mamatha Nijaguna |
INTERNATIONAL PROJECTS | FINANCER | PI |
---|---|---|
MECHANOCONTROL · Mechanical control of biological function (2017-2021) | European Commission, FET Proactive | Pere Roca-Cusachs |
TALVIN · Inhibiting mechanotransduction for the treatment of pancreatic cancer (2018-2021) | European Commission, FET Innovation Launchpad | Pere Roca-Cusachs |
MECHANOSITY Mechanical regulation of cellular behaviour in 3D viscoelastic materials (2019-2022) | European Commission, MARIE CURIE | Alberto Elosegui |
PRIVATELY-FUNDED PROJECTS | FINANCER | PI |
---|---|---|
Mech4Cancer · Enabling technologies to map nuclear mechanosensing: from organoids to tumors (2020-2023) | Obra Social La Caixa Health Research Call | Pere Roca-Cusachs |
Understanding YAP-mediated mechanotransduction in pancreatic cancer (2020-2023) | Fundació La Marató de TV3 | Pere Roca-Cusachs |
Understanding and measuring mechanical tumor properties to improve cancer diagnosis, treatment, and survival: Application to liquid biòpsies (2017-2022) | Obra Social La Caixa | Pere Roca-Cusachs |
FINISHED PROJECTS | FINANCER | PI |
---|---|---|
Desarrollo de una terapia innovadora para el tratamiento de los tumores sólidos mediante la inhibición de la mecanotransducción (2018-2020) | MINECO, Subprograma Retos-Colaboración | Pere Roca-Cusachs |
Understanding and measuring mechanical tumor properties to improve cancer diagnosis, treatment, and survival: Application to liquid biopsies (2017-2020) | Obra Social La Caixa | Pere Roca-Cusachs |
IMREG El sistema acoplado entre integrinas y proteínas adaptadoras como regulador mecánico del comportamiento celular (2016-2020) | MINECO, Proyectos I+D Excelencia![]() | Pere Roca-Cusachs |
MECHANOMEMBRANE Redes mecanoquímicas en la membrana plasmática (2017-2018) | MINECO, Subprograma Estatal de Generación de Conocimiento “EUROPA EXCELENCIA” | Pere Roca-Cusachs |
Stromal stiffness in tumor progression (2014-2017) | Fundació La Marató de TV3 | Pere Roca-Cusachs |
MECBIO Red de Excelencia en Mecanobiología (2014-2016) | MINECO, Subprograma Estatal de Generación de Conocimiento “REDES DE EXCELENCIA” | Pere Roca-Cusachs |
Inhibiting mechanostransduction as a novel therapy in the treatment of solid tumors (2017-2018) | Obra Social La Caixa | Pere Roca-Cusachs |
Publications
Click here for a list of publications by Pere Roca-Cusachs with IBEC affiliation.
Click here for a full list of publications including those affiliated to other organisations.
Equipment
- Confocal Microcopy
- Traction Microscopy
- Live cell fluorescence microscopy
- Cell stretching
- Cell culture
- Magnetic Tweezers
- Atomic Force Microscopy
- Surface Micro/Nano-patterning
- Optical tweezers
Collaborations
- Dr. Nils Gauthier
Mechanobiology Institute, Singapore - Prof. Miguel Ángel del Pozo
Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid - Prof. Marino Arroyo
UPC, Barcelona - Prof. Ada Cavalcanti
University of Heidelberg, Germany - Satyajit Mayor
National Centre for Biological Sciences, Bangalore, India - Sergi Garcia-Manyes
King’s College, London, UK - Cheng Zhu
Georgia Tech, Atlanta, USA - Louise Jones
Barts Cancer Institute, London, UK - Aránzazu del Campo
INM Saarbrücken, Germany - Johan de Rooij and Patrick Derksen
UMC Utrecht, the Netherlands - Johanna Ivaska
University of Turku, Finland - Jacco van Rheenen
Netherlands Cancer Institute, Netherlands - Isaac Almendros and Ramon Farré
UB, Barcelona - Marc Martí-Renom
CNAG, Barcelona
Clinical collaborations
- University Medical Centre Utrecht
- Vall d’hebron Institute of Oncology
News
Èxit en la Cloenda de la 6ª edició del curs “Bojos i Boges per la Bioenginyeria”
Per sisè any consecutiu, l’IBEC ha celebrat amb èxit el seu curs “Bojos i Boges per la Bioenginyeria”, amb el suport de la Fundació Catalunya La Pedrera. Destinat als estudiants de 1r de batxillerat interessats en carreres STEM, el programa ofereix una immersió única en el món de la bioenginyeria, abordant problemes de salut des d’una perspectiva multidisciplinària. L’acte de cloenda, al qual van assistir l’alumnat i les seves famílies, va ser marcat per les presentacions dels treballs finals i l’entrega de diplomes.
Evitar que els teixits responguin al seu enduriment pot ser clau per frenar l’avanç dels tumors de mama
Un estudi liderat per l’Institut de Bioenginyeria de Catalunya demostra que la laminina, una proteïna present en els teixits mamaris, evita els efectes de l’enduriment, protegint les cèl·lules contra el creixement tumoral. El mecanisme s’ha demostrat in vitro, però es creu que també podria funcionar in vivo a partir de l’observat en mostres de pacients.
Daniel Navajas: 30 anys dedicats a la mecanobiologia
El passat 5 de maig es va celebrar el simposi Before Mechanobiology had a name (abans que la mecanobiologia tingués un nom), amb motiu de la jubilació del Professor Daniel … Read more
L’investigador Pere Roca-Cusachs ha sigut guardonat amb la beca europea ERC Advanced Grant
Pere Roca-Cusachs, investigador de l’IBEC ha estat un dels guardonats amb una “ERC Advanced Grant”, un dels finançaments més prestigiosos i competitius de la UE. Aquest tipus de finançament permet … Read more
L’investigador català Pere Roca-Cusachs guardonat amb una prestigiosa beca europea ERC Advanced Grant
L’investigador de l’Institut de Bioenginyeria de Catalunya ha estat guardonat amb una “ERC Advanced Grant”, un dels finançament més prestigiosos i competitius de la UE que permet a investigadors consolidats … Read more
Pere Roca contra la progressió del càncer al Big Vang
Pere Roca-Cusachs, investigador principal de l’IBEC, apareix a la secció del Big Vang de La Vanguardia per la seva recerca en mecanotransducció cel·lular.
Mecanotransducció als mitjans
Investigadors de l’IBEC liderats per Pere Roca-Cusachs i Xavier Trepat apareixen als mitjans per un estudi que obre portes per a noves investigacions de teràpies i diagnòstics contra el càncer.
Mecanotransducció: aplicació de la mecànica nuclear per a comprendre la salut i la malaltia
Un estudi liderat per investigadors de l’IBEC i publicat a la revista Nature Cell Biology demostra que l’aplicació de força mecànica al nucli cel·lular afecta al transport de proteïnes a través de la membrana nuclear. Aquesta acció controla els processos cel·lulars i podria exercir un paper clau en diverses malalties, com el càncer. Això implica un enfocament nou per a comprendre els aspectes de la invasió del càncer i la metàstasi, obrint portes a noves tècniques potencials tant diagnòstiques com terapèutiques.
Investigadors descobreixen com les membranes cel·lulars canvien la curvatura en funció de les proteïnes BAR
Un equip d’investigadors de l’IBEC i de la UPC, dirigit per Pere Roca-Cusachs i Marino Arroyo, estudia com les proteïnes BAR, una família de molècules que s’uneixen a les membranes cel·lulars corbes, són capaces de remodelar-les. Els científics publiquen en la revista Nature Communications, a través d’experiments i models, la dinàmica d’aquests processos de remodelació de membranes que ocorren tant en cèl·lules normals com en escenaris de malalties.
“L’estira i arronssa cel·lular”, protagonista també als mitjans
Investigadors liderats per Pere Roca-Cusachs apareixen a diferents mitjans pel seu estudi publicat en la prestigiosa revista Nature Communications que descobreix com la dinàmica de forces afecta les cèl·lules, i als teixits vius.
Jobs
Postdoctoral researcher at the Cellular and Molecular Mechanobiology Research Group.
Ref: PR-PR //Deadline: 15/12/2023
Postdoctoral researcher at the Cellular and Molecular Mechanobiology Research Group
Ref: PR_PR/Deadline:20/11/2023
Research Assistant at the Cellular and Molecular Mechanobiology Research Group
Ref: RA_PR/Deadline:07/11/2023
Research Assistant at the Cellular and Molecular Mechanobiology Research Group
Ref: RA_PR/ Deadline: 16/10/2023
Predoctoral researcher in Cellular and molecular mechanobiology
Ref: FPI_PR/Deadline:15/10/2023
Postdoc position at the Cellular and Molecular Mechanobiology Research Group
Ref: PD_PR //Deadline: 20/09/2023
Postdoctoral at the Cellular and Molecular Mechanobiology Research Group Unit
Ref: PR_PR// Deadline: 23/06/2023
Laboratory Technician at the Cellular and Molecular Mechanobiology Research Group (LT_PR)
Ref: LT_PR // Deadline: 30/06/2023