DONATE

Nanomalaria

The Nanomalaria group is a joint unit affiliated with IBEC and the Barcelona Institute for Global Health (ISGlobal), located in the Esther Koplowitz Centre near Hospital Clínic (Barcelona).

About


The current activity of the Nanomalaria group is focused on the development of nanomedicine-based systems to be applied to malaria prophylaxis, diagnosis and therapy.

Methods for the diagnosis of malaria can benefit from nanotools applied to the design of microfluidic-based devices for the accurate identification of the parasite’s strain, its precise infective load, and the relative content of the different stages of its life cycle, whose knowledge is essential for the administration of adequate therapies.

Malaria is arguably one of the main medical concerns worldwide because of the numbers of people affected, the severity of the disease and the complexity of the life cycle of its causative agent, the protist Plasmodium spp. The clinical, social and economic burden of malaria has led for the last 100 years to several waves of serious efforts to reach its control and eventual eradication, without success to this day.

With the advent of nanoscience, renewed hopes have appeared of finally obtaining the long sought-after magic bullet against malaria in the form of a nanovector for the targeted delivery of antimalarial drugs exclusively to Plasmodium-infected cells. Nanotechnology can also be applied to the discovery of new antimalarials through single-molecule manipulation approaches for the identification of novel drugs targeting essential molecular components of the parasite.

The benefits and drawbacks of these nanosystems have to be considered in different possible scenarios, including economy-related issues that are hampering the progress of nanotechnology-based medicines against malaria with the dubious argument that they are too expensive to be used in developing areas. Unfortunately, it is true that the application of nanoscience to infectious disease has been traditionally neglected, with most research resources overwhelmingly biased towards other pathologies more prominent in the developed world. Thus, extra ingenuity is demanded from us: malaria-oriented nanomedicines not only need to work spotless; they have to do so in a cost-efficient way because they will be deployed in low-income regions.

The driving force of the Nanomalaria group is our personal commitment to applying nanomedicine to infectious diseases of poverty through several research lines:

  • Exploration of different types of encapsulating structure (liposomes, synthetic and natural polymers), targeting molecule (protein, polysaccharide, nucleic acid aptamers), and antimalarial compound (e.g. new structures derived from marine organisms and antimicrobial peptides) for the assembly of nanovectors capable of delivering their drug cargo with complete specificity to diseased cells.
  • Study of metabolic pathways present in Plasmodium but absent in humans, with the aim of identifying specific enzymes as therapeutic targets.
  • Use of glycosaminoglycans for innovative antimalarial strategies.
  • Design of new methods for the targeted drug delivery to Plasmodium stages in the mosquito vector.
  • Investigation of novel drugs against insect-borne diseases working through radically new mechanisms.
  • Extension of our activities to new pathologies (leishmaniasis).

FIGURE 1. Top: female Anopheles gambiae mosquito. From: John Smart, A Handbook for the Identification of Insects of Medical Importance, British Museum, London, 1948. Bottom: Logo of the NANOpheles project (EURONANOMED III call) coordinated by the Nanomalaria Group.
FIGURE 2. Cover image of the PhD Thesis of Dr. Elisabet Martí Coma-Cros, Investigation of branched and linear polymers as oral delivery systems of antimalarial drugs. 2019. Universitat de Barcelona. Cover design by Mar Martí Coma-Cros.

Staff

Xavier Fernàndez-Busquets

Group Leader
+34 93 227 5400 ext 4581
xfernandezibecbarcelona.eu

Projects

NATIONAL PROJECTSFINANCERPI
IPANAT Investigación de la agregación proteica como nueva diana antimalárica (2019-2021)MICIU, Retos investigación: Proyectos I+DXavier Fernández- Busquets
Coated liposome nanocomplexes as drug delivery systems for treatment of leishmaniasisFundació La Marató de TV3Xavier Fernández-Busquets
PRIVATELY-FUNDED PROJECTSFINANCERPI
Identificació de fraccions d’heparina com a noves teràpies antimalàriquesBioiberica, S.A.Xavier Fernández- Busquets
FINISHED PROJECTSFINANCERPI
NANOpheles Development of nanovectors for the targeted delivery in Anopheles mosquitoes of agents blocking transmission of Plasmodium parasites (2017-2021)EURONANOMED III: European innovative research & technological development projects in nanomedicineXavier Fernández- Busquets
PaMapDX · Pan-Malaria Aptamer-based Rapid Diagnostic Test (2020-2021)Obra Social La Caixa, CaixaimpulseElena Lantero
NANOMISSION Ingeniería de nanovectores para la liberación de fármacos antimaláricos a fases de transmisión de PlasmodiumMINECO, Retos investigación: Proyectos I+DXavier Fernández- Busquets
NANOMALNET Exploración de nuevas moléculas direccionadoras eficientes para la liberación de antimaláricosBiotechnology Programme, MINECO, Spain (BIO2011-25039)Xavier Fernández- Busquets
Amphoteric polyamidoamines as innovative tools to selectively direct antimalarial drugs towards Plasmodium-infected red blood cellsFundación CARIPLOXavier Fernández- Busquets

Publications

Equipment

  • Zeiss Primostar microscope
  • Shake ‘N’ Stack (Thermo Hybaid) hybridization oven
  • Rotatory evaporator RS 3000-V (Selecta)
  • Plasmodium falciparum cell cultures

Collaborations

  • Prof. Dario Anselmetti
    Universität Bielefeld, Germany. Single molecule force spectroscopy
  • Prof. Maria Antònia Busquets
    University of Barcelona, Spain
  • Prof. Elisabetta Ranucci
    Università degli Studi di Milano, Italy
  • Prof. José Manuel Bautista
    Universidad Complutense de Madrid, Spain
  • Dr. Matthias Rottmann
    Swiss Tropical and Public Health Institute, Basel, Switzerland
  • Prof. Robert Sinden
    Imperial College London, UK
  • Dr. Israel Molina
    Hospital Universitari Vall d’Hebron, Barcelona
  • Prof. José Luis Serrano
    Instituto de Nanociencia de Aragón, Zaragoza
  • Prof. Johan Engbersen
    University of Twente, The Netherlands
  • Dr. Santiago Imperial
    University of Barcelona, Spain
  • Dr. Eduardo Prata Vilanova
    Universidade Federal do Rio de Janeiro, Brazil. Exploration of sulfated polysaccharides of marine origin as antimalarials
  • Dr. Maria Manconi
    Università de Cagliari, Sardinia, Italy. Liposome technology
  • Dr. Krijn Paaijmans
    CRESIB, Barcelona, Spain
  • Dr. Ellen Faszewski
    Wheelock College, Boston, USA. Marine sponge cell adhesion
  • Prof. Bernard Degnan
    University of Brisbane, Australia
  • Dr. Francisco J. Muñoz
    Parc de Recerca Biomèdica de Barcelona, Spain. Amyloid diseases
  • Dr. Inga Siden-Kiamos
    FORTH Institute of Molecular Biology & Biotechnology, Greece. Development of the malaria parasite within the mosquito
  • Prof. Salvador Ventura
    Universitat Autònoma de Barcelona, Bellaterra, Spain. Aggregative proteins
  • Dr. Juan José Valle-Delgado
    Aalto University, Helsinki, Finland. Atomic force microscopy
  • Prof. Mats Wahlgren
    Karolinska Institutet, Stockholm, Sweden
  • Dr. Fatima Nogueira
    Instituto de Higiene e Medicina Tropical, Lisboa, Portugal. Antimalarial drug assays in Plasmodium-infected mosquitoes and mice. 
  • Dr. Christian Grandfils
    University of Liège, Belgium. Biomaterials research. 
  • Salvador Borros
    Institut Químic de Sarrià, Barcelona. Materials Chemistry 
  • Paula Gomes
    Universidade do Porto, Portugal. Development of new antimalarial drugs
  • José Antonio García Salcedo
    Instituto de Parasitología y Biomedicina “López-Neyra”, Consejo Superior de Investigaciones Científicas (CSIC), Granada, SpainSynthesis of chitosan nanoparticles
  • Eva Baldrich
    Hospital Universitari Vall d’Hebron, Barcelona. Malaria diagnosis
  • Kim Williamson
    Uniformed Services University of the Health Sciences, Bethesda, USA. Basic biology of bacterial, viral, and parasite diseases
  • Teresa Sierra
    Instituto de Nanociencia de Aragón, Zaragoza, SpainDendrimer technology 
  • Jos Paulusse
    University of Twente, The Netherlands. Encapsulation of peptides in tailor-made multifunctionalized nanocarriers and polyamidoamine-derived nanogels 

News

Un estudi liderat per l’IBEC i ISGlobal ha demostrat el potencial antileishmanial d’un compost antimalàric. Dissenyat inicialment per a la malària, aquest fàrmac mostra una elevada eficàcia contra la leishmaniosi, marcant un avenç únic i prometedor per al tractament d’ambdues infeccions.

Científics de l’IBEC i ISGlobal desenvolupen un compost innovador eficaç contra malària i la leishmaniosi

Un estudi liderat per l’IBEC i ISGlobal ha demostrat el potencial antileishmanial d’un compost antimalàric. Dissenyat inicialment per a la malària, aquest fàrmac mostra una elevada eficàcia contra la leishmaniosi, marcant un avenç únic i prometedor per al tractament d’ambdues infeccions.

La malària mata més de 500.000 persones cada any. En els darrers tres anys, els investigadors del Projecte NANOpheles van treballar en el desenvolupament de nanovectors dirigits als paràsits Plasmodium dins del mosquit vector. Xavier Fernàndez-Busquets, coordinador del projecte finançat per la UE, explica els avenços en un nou vídeo.

Últims avenços de la nanomedicina europea contra la malària explicats en un nou vídeo

La malària mata més de 500.000 persones cada any. En els darrers tres anys, els investigadors del Projecte NANOpheles van treballar en el desenvolupament de nanovectors dirigits als paràsits Plasmodium dins del mosquit vector. Xavier Fernàndez-Busquets, coordinador del projecte finançat per la UE, explica els avenços en un nou vídeo.

Segons indica l’estudi, l’estratègia té, a més, l’avantatge de reconèixer al gametocist, la fase transmissible del paràsit. Encapsular dos fàrmacs amb propietats diferents en nanovesícules envoltades per anticossos millora notablement la seva especificitat i eficàcia, segons un estudi liderat per Xavier Fernández-Busquets, director de la unitat mixta de Nanomalària de l’Institut de Bioenginyeria de Catalunya (IBEC) i l’Institut de Salut Global de Barcelona (ISGlobal), centre impulsat per ”la Caixa”. La combinació de dos fàrmacs que difereixen en el seu mecanisme d’acció és la base de les teràpies més reeixides avui dia per tractar la malària. Tot i això, la diferència en propietats fisicoquímiques dels fàrmacs (solubilitat, vida mitjana, etc.) afecta moltes vegades a l’eficàcia del tractament.

Els nanovectors podrien millorar l’administració combinada de fàrmacs contra la malària

Segons indica l’estudi, l’estratègia té, a més, l’avantatge de reconèixer al gametocist, la fase transmissible del paràsit. Encapsular dos fàrmacs amb propietats diferents en nanovesícules envoltades per anticossos millora notablement la seva especificitat i eficàcia, segons un estudi liderat per Xavier Fernández-Busquets, director de la unitat mixta de Nanomalària de l’Institut de Bioenginyeria de Catalunya (IBEC) i l’Institut de Salut Global de Barcelona (ISGlobal), centre impulsat per ”la Caixa”. La combinació de dos fàrmacs que difereixen en el seu mecanisme d’acció és la base de les teràpies més reeixides avui dia per tractar la malària. Tot i això, la diferència en propietats fisicoquímiques dels fàrmacs (solubilitat, vida mitjana, etc.) afecta moltes vegades a l’eficàcia del tractament.

Jobs