DONATE

Staff member

Alejandro Ruiz Barreda

+34 934020563
Staff member publications

Ruiz, A. D., Mejía, J. S., López, J. M., Giraldo, B. F., (2019). Characterization of cardiac and respiratory system of healthy subjects in supine and sitting position Pattern Recognition and Image Analysis ibPRIA 2019: Iberian Conference on Pattern Recognition and Image Analysis (Lecture Notes in Computer Science) , Springer, Cham (Madrid, Spain) 11867, 367-377

Studies based on the cardiac and respiratory system have allowed a better knowledge of their behavior to contribute with the diagnosis and treatment of diseases associated with them. The main goal of this project was to analyze the behavior of the cardiorespiratory system in healthy subjects, depending on the body position. The electrocardiography and respiratory flow signals were recorded in two positions, supine and sitting. Each signal was analyzed considering sliding windows of 30 s, with and overlapping of 50%. Temporal and spectral features were extracted from each signal. A total of 187 features were extracted for each window. According to statistical analysis, 148 features showed significant differences when comparing the position of the subject. Afterwards, the classifications methods based on decision trees, k-nearest neighbor and support vector machines were applied to identify the best classification model. The most advantageous performance model was obtained with a linear support vector machine method, with an accuracy of 99.5%, a sensitivity of 99.2% and a specificity of 99.6%. In conclusion, we have observed that the position of the body (supine or sitting) could modulate the cardiac and respiratory system response. New statistical models might provide new tools to analyze the behavior of these systems and the cardiorespiratory interaction complexity.

JTD Keywords: Cardiac dynamics, Respiratory dynamics, Statistical models, Supine and sitting posture


Serious infections caused by bacteria that are resistant to commonly used antibiotics have become a major global healthcare problem in the 21st century. Multidrug-resistant bacteria causing severe infections mainly grow in complex bacterial communities known as biofilms, in which bacterial resistance to antibacterial agents and to the host immune system is strengthened. As drug resistance is becoming a threatening problem, it is necessary to develop new antimicrobial agents with novel mechanisms of action. Here, we designed and synthesized a small library of N-substituted hydroxylamine (N-HA) compounds with antibacterial activity. These compounds, acting as radical scavengers, inhibit the bacterial ribonucleotide reductase (RNR) enzyme. RNR enzyme is essential for bacterial proliferation during infection, as it provides the building blocks for DNA synthesis and repair. We demonstrate the broad antimicrobial effect of several drug candidates against a variety of Gram-positive and Gram-negative bacteria, together with low toxicity toward eukaryotic cells. Furthermore, the most promising compounds can reduce the biomass of an established biofilm on Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli. This study settles the starting point to develop new N-hydroxylamine compounds as potential effective antibacterial agents to fight against drug-resistant pathogenic bacteria.

JTD


Ruiz, A., Mills, C. A., Valsesia, A., Martinez, E., Ceccone, G., Samitier, J., Colpo, P., Rossi, F., (2009). Large-area, nanoimprint-assisted microcontact stripping for the fabrication of microarrays of fouling/nonfouling nanostructures Small 5, (10), 1133-1137

Methods for the accurate positioning of nanometric beads on a substrate have been developed over a number of years, and range from serial atomic force microscopy (AFM)techniques for single-bead positioning to parallel techniques for the positioning of large populations of beads in monolayer or multilayer architectures, typically from a liquid suspension. For example, topographic cues have been used for bead-based protein array production, although in this case, there is a random distribution of beads within the topography. Bead patterning has also been achieved in capillaries using a micromolding in capillaries (MIMIC) technique. Line patterns with micrometer widths are possible with this technique, achieving good multilayer organization. For monolayer bead patterning at micrometer dimensions, electrostatic forces and similar electrostatic assemblies using nanoxerography, as well as patterning by selective chemical functionalization, by transfer of particles from a liquid–liquid interface, and by subtracting top–down processes, are possible.

JTD Keywords: Microcontact stripping, Nanostructures, Poly(acrylic acid), Polystyrene, Surface patterning