Cell membranes play a key role in bottom-up synthetic biology, as they enable interaction control, transport, and other essential functions. These ultra-thin, flexible, yet stable structures form through the self-assembly of lipids and proteins. While liposomes are common mimics, their synthetic membranes often fail to replicate natural properties due to poor structural control. To address this, pepticombs are introduced, a new family of supramolecular building blocks. They are synthesized by regularly appending anionic surfactants with lipid-long alkyl tails to cationic amino acid residues of recombinant elastin-like supercharged unfolded polypeptides (SUPs). Using microscopy techniques and molecular dynamics simulations, the formation of giant unilamellar vesicles, termed pepticombisomes, is demonstrated and their membrane properties are characterized. The molecular topology of pepticombs allows for precise mimicry of membrane thickness and flexibility, beyond classic polymersomes. Unlike the previously introduced ionically-linked comb polymers, all pepticombs exhibit a uniform degree of polymerization, composition, sequence, and spontaneous curvature. This uniformity ensures consistent hydrophobic tail distribution, facilitating intermolecular hydrogen bonding within the backbone. This generates elastic heterogeneities and the concomitant formation of non-icosahedral faceted vesicles, as previously predicted. Additionally, pepticombisomes can incorporate functional lipids, enhancing design flexibility.
Wagner, Anna M., Quandt, Jonas, Söder, Dominik, Garay-Sarmiento, Manuela, Joseph, Anton, Petrovskii, Vladislav S., Witzdam, Lena, Hammoor, Thomas, Steitz, Philipp, Haraszti, Tamás, Potemkin, Igor I., Kostina, Nina Yu., Herrmann, Andreas, Rodriguez-Emmenegger, Cesar, (2022). Ionic Combisomes: A New Class of Biomimetic Vesicles to Fuse with LifeAdvanced Science 9, e2200617-2200617
The construction of biomembranes that faithfully capture the properties and dynamic functions of cell membranes remains a challenge in the development of synthetic cells and their application. Here a new concept for synthetic cell membranes based on the self-assembly of amphiphilic comb polymers into vesicles, termed ionic combisomes (i-combisomes) is introduced. These combs consist of a polyzwitterionic backbone to which hydrophobic tails are linked by electrostatic interactions. Using a range of microscopies and molecular simulations, the self-assembly of a library of combs in water is screened. It is discovered that the hydrophobic tails form the membrane's core and force the backbone into a rod conformation with nematic-like ordering confined to the interface with water. This particular organization resulted in membranes that combine the stability of classic polymersomes with the biomimetic thickness, flexibility, and lateral mobility of liposomes. Such unparalleled matching of biophysical properties and the ability to locally reconfigure the molecular topology of its constituents enable the harboring of functional components of natural membranes and fusion with living bacteria to “hijack” their periphery. This provides an almost inexhaustible palette to design the chemical and biological makeup of the i-combisomes membrane resulting in a powerful platform for fundamental studies and technological applications.
Les cookies són importants per a tu, influeixen en la teva experiència de navegació, ens ajuden a protegir la teva privacitat i permeten realitzar les sol·licituds que ens facis a través del web. Utilitzem cookies pròpies i de tercers per analitzar els nostres serveis i mostrar-te publicitat relacionada amb les teves preferències, basada en un perfil elaborat a partir dels teus hàbits de navegació. Pots «Acceptar» o «Rebutjar» aquelles cookies que no siguin tècniques, així com configurar les teves preferències prement «Configurar cookies». Per a més informació, consulta la nostra Política de Cookies.
Functional
Sempre actiu
The technical storage or access is strictly necessary for the legitimate purpose of enabling the use of a specific service explicitly requested by the subscriber or user, or for the sole purpose of carrying out the transmission of a communication over an electronic communications network.
Preferences
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Statistics
The technical storage or access that is used exclusively for statistical purposes.The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
Marketing
The technical storage or access is required to create user profiles to send advertising, or to track the user on a website or across several websites for similar marketing purposes.