DONATE

Publications

by Keyword: bottom-up synthetic biology

Joseph, A, Wagner, AM, Garay-Sarmiento, M, Aleksanyan, M, Haraszti, T, Söder, D, Georgiev, VN, Dimova, R, Percec, V, Rodriguez-Emmenegger, C, (2022). Zwitterionic Dendrimersomes: A Closer Xenobiotic Mimic of Cell Membranes Advanced Materials 34, e2206288

Building functional mimics of cell membranes is an important task toward the development of synthetic cells. So far, lipid and amphiphilic block copolymers are the most widely used amphiphiles with the bilayers by the former lacking stability while membranes by the latter are typically characterized by very slow dynamics. Herein, we introduce a new type of Janus dendrimer containing a zwitterionic phosphocholine hydrophilic headgroup (JDPC ) and a 3,5-substituted dihydrobenzoate-based hydrophobic dendron. JDPC self-assembles in water into zwitterionic dendrimersomes (z-DSs) that faithfully recapitulate the cell membrane in thickness, flexibility, and fluidity, while being resilient to harsh conditions and displaying faster pore closing dynamics in the event of membrane rupture. This enables the fabrication of hybrid DSs with components of natural membranes, including pore-forming peptides, structure-directing lipids, and glycans to create raft-like domains or onion vesicles. Moreover, z-DSs can be used to create active synthetic cells with life-like features that mimic vesicle fusion and motility as well as environmental sensing. Despite their fully synthetic nature, z-DSs are minimal cell mimics that can integrate and interact with living matter with the programmability to imitate life-like features and beyond. This article is protected by copyright. All rights reserved.This article is protected by copyright. All rights reserved.

JTD Keywords: biological-membranes, bottom-up synthetic biology, chain, hybrid vesicles, hydroethidine, organization, polymersome, proteins, stability, synthetic cells, thickness, vesicle fusion, vesicle motility, vesicles, zwitterionic dendrimersomes, Biosensor, Biosensors, Bottom-up synthetic biology, Hybrid vesicles, Lipid-bilayers, Synthetic cells, Vesicle fusion, Vesicle motility, Zwitterionic dendrimersomes


Wagner, AM, Eto, H, Joseph, A, Kohyama, S, Haraszti, T, Zamora, RA, Vorobii, M, Giannotti, MI, Schwille, P, Rodriguez-Emmenegger, C, (2022). Dendrimersome Synthetic Cells Harbor Cell Division Machinery of Bacteria Advanced Materials 34, 2202364

The integration of active cell machinery with synthetic building blocks is the bridge toward developing synthetic cells with biological functions and beyond. Self-replication is one of the most important tasks of living systems, and various complex machineries exist to execute it. In Escherichia coli, a contractile division ring is positioned to mid-cell by concentration oscillations of self-organizing proteins (MinCDE), where it severs membrane and cell wall. So far, the reconstitution of any cell division machinery has exclusively been tied to liposomes. Here, the reconstitution of a rudimentary bacterial divisome in fully synthetic bicomponent dendrimersomes is shown. By tuning the membrane composition, the interaction of biological machinery with synthetic membranes can be tailored to reproduce its dynamic behavior. This constitutes an important breakthrough in the assembly of synthetic cells with biological elements, as tuning of membrane-divisome interactions is the key to engineering emergent biological behavior from the bottom-up.

JTD Keywords: bacterial cell division, bottom-up synthetic biology, dendrimersomes, dynamic min patterns, ftsz assembly, Bacterial cell division, Bottom-up synthetic biology, Dendrimersomes, Dynamic min patterns, Dynamics, Ftsz assembly, Ftsz filaments, Mind, Organization, Pole oscillation, Polymersome membranes, Proteins, Rapid pole, Synthetic cells, Vesicles


Wagner, Anna M., Quandt, Jonas, Söder, Dominik, Garay-Sarmiento, Manuela, Joseph, Anton, Petrovskii, Vladislav S., Witzdam, Lena, Hammoor, Thomas, Steitz, Philipp, Haraszti, Tamás, Potemkin, Igor I., Kostina, Nina Yu., Herrmann, Andreas, Rodriguez-Emmenegger, Cesar, (2022). Ionic Combisomes: A New Class of Biomimetic Vesicles to Fuse with Life Advanced Science 9, e2200617-2200617

The construction of biomembranes that faithfully capture the properties and dynamic functions of cell membranes remains a challenge in the development of synthetic cells and their application. Here a new concept for synthetic cell membranes based on the self-assembly of amphiphilic comb polymers into vesicles, termed ionic combisomes (i-combisomes) is introduced. These combs consist of a polyzwitterionic backbone to which hydrophobic tails are linked by electrostatic interactions. Using a range of microscopies and molecular simulations, the self-assembly of a library of combs in water is screened. It is discovered that the hydrophobic tails form the membrane's core and force the backbone into a rod conformation with nematic-like ordering confined to the interface with water. This particular organization resulted in membranes that combine the stability of classic polymersomes with the biomimetic thickness, flexibility, and lateral mobility of liposomes. Such unparalleled matching of biophysical properties and the ability to locally reconfigure the molecular topology of its constituents enable the harboring of functional components of natural membranes and fusion with living bacteria to “hijack” their periphery. This provides an almost inexhaustible palette to design the chemical and biological makeup of the i-combisomes membrane resulting in a powerful platform for fundamental studies and technological applications.

JTD Keywords: amphiphilic comb polymers, bottom-up synthetic biology, hybrid vesicles, polyelectrolyte-surfactant complexes, polymersomes, synthetic biomembranes, Vesicle fusion