Despite significant efforts in developing novel biomaterials to regenerate tissue, only a few of them have successfully reached clinical use. It has become clear that the next generation of biomaterials must be multifunctional. Smart biomaterials can respond to environmental or external stimuli, interact in a spatial-temporal manner, and trigger specific tissue/organism responses. In this study, the fabrication of novel 3D-printed and bioresorbable scaffolds, with embedded crystals that can convert near-infrared (NIR) light into visible light, is presented. It is demonstrated that these biophotonic scaffolds are not only bioactive and bioresorbable, but can also be promising as a platform for the controlled release or activation of photoactivated drugs locally and on demand, under illumination. The scaffolds are analyzed based on their up-conversion spectroscopic properties and their chemical stability in simulated body fluid. Furthermore, it is demonstrated that the up-conversion properties of the scaffolds are sufficient to release the signaling molecule nitric oxide (NO) and to photoisomerize the muscarinic ligand Phthalimide-Azo-Iperoxo (PAI), in a controlled manner, upon NIR light stimulus. Finally, to assess their biocompatibility for potential implantation, a preliminary study is conducted with human adipose stem cells cultured in contact with scaffolds. Live/dead assays, morphological analysis, CyQUANT analysis, and ion release measurements confirm that, despite some release of the upconverter crystals, the biophotonic materia and its dissolution by-products, are biocompatible. These findings highlight the potential of these bioresorbable biophotonic scaffolds for localized drug release in response to NIR light stimuli.
The interest in the photochromism and functional applications of donor-acceptor Stenhouse adducts (DASAs) soared in recent years owing to their outstanding advantages and flexible design. However, their low solubility and irreversible conversion in aqueous solutions hampered exploring DASAs for biology and medicine. It is notably unknown whether the barbiturate electron acceptor group retains the pharmacological activity of drugs such as phenobarbital, which targets γ-aminobutyric acid (GABA)-type A receptors (GABAARs) in the brain. Here, we have developed the model compound DASA-barbital based on a scaffold of red-switching second-generation DASAs, and we demonstrate that it is active in GABAARs and alters the neuronal firing rate in a physiological medium at neutral pH. DASA-barbital can also be reversibly photoswitched in acidic aqueous solutions using cyclodextrin, an approved ingredient of drug formulations. These findings clarify the path toward the biological applications of DASAs and to exploit the versatility displayed in polymers and materials science.
Over the last decades, photopharmacology has gone far beyond its proof-of-concept stage to become a bona fide approach to study neural systems in vivo. Indeed, photopharmacological control has expanded over a wide range of endogenous targets, such as receptors, ion channels, transporters, kinases, lipids, and DNA transcription processes. In this review, we provide an overview of the recent progresses in the in vivo photopharmacological control of neuronal circuits and behavior. In particular, the use of small aquatic animals for the in vivo screening of photopharmacological compounds, the recent advances in optical modulation of complex behaviors in mice, and the development of adjacent techniques for light and drug delivery in vivo are described.
Les cookies són importants per a tu, influeixen en la teva experiència de navegació, ens ajuden a protegir la teva privacitat i permeten realitzar les sol·licituds que ens facis a través del web. Utilitzem cookies pròpies i de tercers per analitzar els nostres serveis i mostrar-te publicitat relacionada amb les teves preferències, basada en un perfil elaborat a partir dels teus hàbits de navegació. Pots «Acceptar» o «Rebutjar» aquelles cookies que no siguin tècniques, així com configurar les teves preferències prement «Configurar cookies». Per a més informació, consulta la nostra Política de Cookies.
Funcionals
Sempre actiu
l’emmagatzematge o l’accés tècnic és estrictament necessari per a la finalitat legítima de permetre l’ús d’un servei específic sol·licitat explícitament pel subscriptor o l’usuari, o amb l’únic objectiu de dur a terme la transmissió d’una comunicació a través d’una xarxa de comunicacions electròniques.
Preferences
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Statistics
The technical storage or access that is used exclusively for statistical purposes.L’emmagatzematge o l’accés tècnic que s’utilitza exclusivament amb finalitats estadístiques anònimes. Sense una ordre judicial, el compliment voluntari per part del seu proveïdor de serveis d’Internet, o registres addicionals d’un tercer, la informació emmagatzemada o recuperada amb aquesta única finalitat no es pot utilitzar normalment per identificar-lo.
Marketing
L’emmagatzematge o l’accés tècnic és necessari per crear perfils d’usuari amb la finalitat d’enviar publicitat, o per fer el seguiment de l’usuari en un lloc web o en diversos llocs web amb finalitats de màrqueting similars.