Pluripotency for organ regeneration


Núria Montserrat Pulido | Group Leader / ICREA Research Professor
Elena Garreta Bahima | Senior Researcher
Andrés Marco Giménez | Postdoctoral Researcher
Carolina Tarantino | Senior Technician
Aurora García Robles | Project Manager
Gaia Amato | PhD Student
Maria Gallo | PhD Student
Zarina Nauryzgaliyeva | PhD Student
Aleix Martínez Oliver | Laboratory Technician
Daniel Moya Rull | Laboratory Technician
Ricard Artiga | Masters Student
Sara Ponce Gómez | Masters Student
Jorge Sanz Moñino | Masters Student
Wajima Safi | Visiting Researcher

About

The generation of induced pluripotent stem cells (iPSCs), especially the generation of patient-derived pluripotent stem cells suitable for disease modelling in vitro, opens the door for the potential translation of stem-cell related studies into the clinic.

Figure 1: A. Representative immunofluorescence image of an organoid at day 25 of differentiation stained for the expression of ECADHERIN (green), WT1 (red) and PODOCALYXIN (yellow). Scale bar, 500 μm.

Successful replacement, or augmentation, of the function of damaged cells by patient derived differentiated stem cells would provide a novel cell-based therapy for diseases. Since iPSCs resemble human embryonic stem cells (hESCs) in their ability to generate cells of three germ layers, patient-specific iPSCs offer definitive solutions for the ethical and histo-incompatibility issues related to hESCs. Indeed human iPSC (hiPSC)-based autologous transplantation is heralded as the future of regenerative medicine.

One of our aims is to generate and correct disease-specific hiPSCs for disease modelling and drug screening. The combination of gene-editing based methodologies together with the development of novel protocols for cell differentiation into relevant tissues/organs, provides a unique scenario for modelling disease progression, and the identification of molecular and cellular mechanisms leading to organ regeneration (Figure 2). In this regard we are particularly interested in generation of transgene-free and disease free patient derived hiPSCs for disease modelling and the discovery of novel therapeutic targets.

Figure 2: Patient induced pluripotent stem cells (iPSCs) represent an unprecedented tool for the generation of in vitro platforms for disease modelling and the definition of protocols for pluripotent stem cells differentiation. Transdifferentiation also offers the possibility to generate auto-compatible cells with no need to undergo to pluripotent stage. In these scenarios the correction of the genetic defect(s) leading to disease may help to understand the molecular and cellular mechanisms driving disease gestation and progression, and more importantly, to identify novel mechanisms leading to organ regeneration. The combination of gene editing methodologies with defined protocols for tissue differentiation helps us to generate in vitro systems for drug screening and disease modelling.

We believe that the recovery of tissue function should not be restricted to the development of cell replacement therapies. In this regard, in our laboratory we take advantage of organisms that possess the ability to regenerate such as zebrafish, in order to understand which molecular and cellular pathways lead to organ regeneration. Surprisingly, studies in neonatal mice have demonstrated that soon after birth this organism posses the capability to regenerate its heart. Taking advantage of such preliminary observations we are translating such analysis in order to understand if the mammalian neonatal kidney still posses the capability to regenerate, and more importantly, if we are able to dissect the epigenetic and cellular mechanisms leading to those responses.

 Lastly, and in an effort to fully develop in vitro and ex vivo platforms for organ regeneration, in our lab we are focused in the development of reporter cell lines for different transcription factors essential for tissue-specific commitment and differentiation (i.e: renal and cardiac lineages). The possibility to combine pluripotent stem cell lines together with decellularized matrices, functionalized biomaterials and ex vivo organoids offers and unprecedented opportunity for the immediate generation of patient-specific in vitro and ex vivo platforms for disease modelling and organ regeneration (Figure 3).

Figure 3: Induced pluripotent stem cells (iPSCs) resemble human embryonic stem cells (hESCs) in their ability to generate cells of the three germ layers of the embryo. This capacity can help us to understand the molecular and cellular cues driving cell fate. Our aim is to generate reporter cell lines from patient iPSCs in order to develop robust protocols for pluripotent stem cells differentiation. Moreover, the combination of patient differentiated populations together with functionalized biomaterials, ex vivo approaches (i.e: organoids), and decellularized tissue matrices, offers and unprecedented strategy for organ regeneration.

News/Jobs

“Las bioimpresoras abren el camino a la creacion de organos en 3D”
09/10/17

Nuria Montserrat features in an article in El Periodico today which discusses the possibilities offered by 3D bioprinting to create replacement tissues or even whole organs.


“Más cerca de generar corazones bioartificiales”
29/06/16

An article about Nuria Montserrat appeared in El Mundo on Tuesday following her invovlement in a recent study in which the first human heart grafts from human pluripotent stem cells were generated.


Researchers generate human heart grafts from human pluripotent stem cells
19/05/16

Scientists from IBEC, in collaboration with the Hospital General Universitario Gregorio Marañón in Spain and two other groups in the USA, have made a big leap in heart regeneration advances by achieving heart grafts from human pluripotent stem cells for the first time in less than one month.


Bioenginyeria per fer realitat “L’home de carn”
04/05/15

In the magazine Ara, IBEC group leader Nuria Montserrat and artist Marcel·lí Antúnez, who creates interactive sculpture with organic materials, such as Joan l’Home de Carn, appeared in an article together talking about organ regeneration.


Genetic “editing” a new tool to fight inherited disease
24/04/15

Researchers at the Hospital Clínic, IDIBAPS, the Hospital Sant Joan de Deu and the Institute for Bioengineering of Catalonia (IBEC) have participated in a study, led by Dr. Juan Carlos Izpisúa Belmonte of the Gene Expression Laboratory at California’s Salk Institute, that uses molecular “scissors” to remove mitochondrial mutations in mouse eggs.


“Miniriñones de laboratorio”
10/02/2015

New IBEC group leader Nuria Montserrat is featured in an article in El Mundo.


Projects

EU-funded projects
REGMAMKID How to regenerate the mammalian kidney (2015-2020) European Commission, ERC-StG Nuria Montserrat
National projects
CHONDREG Identification of the epigenetic mechanisms preventing chondrocyte de-differentiation: generation of novel therapeutic strategies for the treatment of cartilage chronic osteochondral lesions CIBER Nuria Montserrat
Infarto de miocardio en jóvenes. Factores epigeneticos y nuevos marcadores de riesgo cardiovascular. Efecto de la modulación de la expresión de microRNAs y long-non coding RNAs ISCIII (Collaborator)
Desarrollo de nuevas estrategias para el tratamiento de la enfermedad renal (2015-2017) MINECO Nuria Montserrat
TRATENFREN Desarrollo de nuevas estrategias para el tratamiento de la enfermedad renal (2015-2017) MINECO, Retos investigación: Proyectos I+D Nuria Montserrat
Regenerative medicine for Fanconi anemia: generation of disease-free patient-specific iPS (2013-2016) Fundació La Marató de TV3 Nuria Montserrat

Publications


Gawish R, Starkl P, Pimenov L, Hladik A, Lakovits K, Oberndorfer F, Cronin SJF, Ohradanova-Repic A, Wirnsberger G, Agerer B, Endler L, Capraz T, Perthold JW, Cikes D, Koglgruber R, Hagelkruys A, Montserrat N, Mirazimi A, Boon L, Stockinger H, Bergthaler A, Oostenbrink C, Penninger JM, Knapp S, (2022). ACE2 is the critical in vivo receptor for SARS-CoV-2 in a novel COVID-19 mouse model with TNF-and IFNy-driven immunopathology Elife 11, e74623

Despite tremendous progress in the understanding of COVID-19, mechanistic insight into immunological, disease-driving factors remains limited. We generated maVie16, a mouse-adapted SARS-CoV-2, by serial passaging of a human isolate. In silico modeling revealed how only three Spike mutations of maVie16 enhanced interaction with murine ACE2. maVie16 induced profound pathology in BALB/c and C57BL/6 mice, and the resulting mouse COVID-19 (mCOVID-19) replicated critical aspects of human disease, including early lymphopenia, pulmonary immune cell infiltration, pneumonia, and specific adaptive immunity. Inhibition of the proinflammatory cyto-kines IFN? and TNF substantially reduced immunopathology. Importantly, genetic ACE2-deficiency completely prevented mCOVID-19 development. Finally, inhalation therapy with recombinant ACE2 fully protected mice from mCOVID-19, revealing a novel and efficient treatment. Thus, we here present maVie16 as a new tool to model COVID-19 for the discovery of new therapies and show that disease severity is determined by cytokine-driven immunopathology and critically dependent on ACE2 in vivo. © Gawish et al.

Keywords: covid-19 mouse model, covid-19 therapy, cytokine storm, mavie16, mouse, program, recombinant soluble ace2, tmprss2, Adaptive immunity, Angiotensin converting enzyme 2, Angiotensin-converting enzyme 2, Animal, Animal cell, Animal experiment, Animal model, Animal tissue, Animals, Apoptosis, Article, Bagg albino mouse, Breathing rate, Bronchoalveolar lavage fluid, C57bl mouse, Cell composition, Cell infiltration, Controlled study, Coronavirus disease 2019, Coronavirus spike glycoprotein, Covid-19, Cytokeratin 18, Cytokine production, Dipeptidyl carboxypeptidase, Disease model, Disease models, animal, Disease severity, Drosophila-melanogaster, Enzyme linked immunosorbent assay, Expression vector, Flow cytometry, Gamma interferon, Gene editing, Gene expression, Gene mutation, Genetic engineering, Genetics, Glycosylation, High mobility group b1 protein, Histology, Histopathology, Immune response, Immunocompetent cell, Immunology, Immunopathology, Interferon-gamma, Interleukin 2, Metabolism, Mice, inbred balb c, Mice, inbred c57bl, Mouse-adapted sars-cov-2, Myeloperoxidase, Neuropilin 1, Nonhuman, Nucleocapsid protein, Pathogenicity, Peptidyl-dipeptidase a, Pyroptosis, Renin angiotensin aldosterone system, Rna extraction, Rna isolation, Sars-cov-2, Severe acute respiratory syndrome coronavirus 2, Spike glycoprotein, coronavirus, T lymphocyte activation, Trabecular meshwork, Tumor necrosis factor, Virology, Virus load, Virus replication, Virus transmission, Virus virulence


Aydin, Onur, Passaro, Austin P., Raman, Ritu, Spellicy, Samantha E., Weinberg, Robert P., Kamm, Roger D., Sample, Matthew, Truskey, George A., Zartman, Jeremiah, Dar, Roy D., Palacios, Sebastian, Wang, Jason, Tordoff, Jesse, Montserrat, Nuria, Bashir, Rashid, Saif, MTaher A., Weiss, Ron, (2022). Principles for the design of multicellular engineered living systems Apl Bioengineering 6, 010903

Remarkable progress in bioengineering over the past two decades has enabled the formulation of fundamental design principles for a variety of medical and non-medical applications. These advancements have laid the foundation for building multicellular engineered living systems (M-CELS) from biological parts, forming functional modules integrated into living machines. These cognizant design principles for living systems encompass novel genetic circuit manipulation, self-assembly, cell–cell/matrix communication, and artificial tissues/organs enabled through systems biology, bioinformatics, computational biology, genetic engineering, and microfluidics. Here, we introduce design principles and a blueprint for forward production of robust and standardized M-CELS, which may undergo variable reiterations through the classic design-build-test-debug cycle. This Review provides practical and theoretical frameworks to forward-design, control, and optimize novel M-CELS. Potential applications include biopharmaceuticals, bioreactor factories, biofuels, environmental bioremediation, cellular computing, biohybrid digital technology, and experimental investigations into mechanisms of multicellular organisms normally hidden inside the “black box” of living cells.

Keywords: Artificial tissues, Assembly cells, Biological parts, Biological systems, Bioremediation, Cell engineering, Cell/matrix communication, Design principles, Environmental technology, Functional modules, Fundamental design, Genetic circuits, Genetic engineering, Living machines, Living systems, Medical applications, Molecular biology, Synthetic biology


Garreta E, Nauryzgaliyeva Z, Marco A, Safi W, Montserrat N, (2022). Dissecting nephron morphogenesis using kidney organoids from human pluripotent stem cells Current Opinion In Genetics & Development 72, 22-29

During kidney development the emergence of complex multicellular shapes such as the nephron (the functional unit of the kidney) rely on spatiotemporally coordinated developmental programs. These involve gene regulatory networks, signaling pathways and mechanical forces, that work in concert to shape and form the nephron(s). The generation of kidney organoids from human pluripotent stem cells now represent an unprecedented experimental set up to study these processes. Here we discuss the potential applications of kidney organoids to advance our knowledge of how mechanical forces and cell fate specification spatiotemporally interact to orchestrate nephron patterning and morphogenesis in humans. Progress in innovative techniques for quantifying and perturbing these processes in a controlled manner will be crucial. A mechanistic understanding of the multicellular dynamic processes occurring during nephrogenesis will pave the way to unveil new mechanisms of human kidney disease. © 2021

Keywords: differentiation, dynamics, induction, lumen formation, models, mouse, organogenesis, reveals, tubules, Divergent features


Garreta, E, Nauryzgaliyeva, Z, Montserrat, N, (2021). Human induced pluripotent stem cell-derived kidney organoids toward clinical implementations Curr Opin Biomed Eng 20,

The generation of kidney organoids from human pluripotent stem cells (hPSCs) has represented a relevant scientific achievement in the organoid field. Importantly, hPSC-derived kidney organoids contain multiple nephron-like structures that exhibit some renal functional characteristics and have the capacity to respond to nephrotoxic agents. In this review, we first discuss how bioengineering approaches can help overcome current kidney organoid challenges. Next, we focus on recent works exploiting kidney organoids for drug screening and disease modeling applications. Finally, we provide a state of the art on current research toward the potential application of kidney organoids and renal cells derived from hPSCs for future renal replacement therapies.

Keywords: Bioengineering, Converting enzyme-ii, Crispr/cas9 gene editing, Disease, Disease modeling, Extracellular-matrix, Generation, Human pluripotent stem cells, Kidney organoids, Kidney regeneration, Model, Mouse, Reveals, Scaffold, Transplantation


Molins, B, Garreta, E, del Pozo, CH, Adan, A, Montserrat, N, (2021). Modelling retinal disease with a blood-retinal-barrier in vitro system combining human pluripotent stem cells and decellularized retinal tissue Investigative Ophthalmology & Visual Science 62,

Soblechero-Martín P, Albiasu-Arteta E, Anton-Martinez A, de la Puente-Ovejero L, Garcia-Jimenez I, González-Iglesias G, Larrañaga-Aiestaran I, López-Martínez A, Poyatos-García J, Ruiz-Del-Yerro E, Gonzalez F, Arechavala-Gomeza V, (2021). Duchenne muscular dystrophy cell culture models created by CRISPR/Cas9 gene editing and their application in drug screening Scientific Reports 11, 18188

Gene editing methods are an attractive therapeutic option for Duchenne muscular dystrophy, and they have an immediate application in the generation of research models. To generate myoblast cultures that could be useful in in vitro drug screening, we have optimised a CRISPR/Cas9 gene edition protocol. We have successfully used it in wild type immortalised myoblasts to delete exon 52 of the dystrophin gene, modelling a common Duchenne muscular dystrophy mutation; and in patient’s immortalised cultures we have deleted an inhibitory microRNA target region of the utrophin UTR, leading to utrophin upregulation. We have characterised these cultures by demonstrating, respectively, inhibition of dystrophin expression and overexpression of utrophin, and evaluating the expression of myogenic factors (Myf5 and MyH3) and components of the dystrophin associated glycoprotein complex (α-sarcoglycan and β-dystroglycan). To demonstrate their use in the assessment of DMD treatments, we have performed exon skipping on the DMDΔ52-Model and have used the unedited DMD cultures/ DMD-UTRN-Model combo to assess utrophin overexpression after drug treatment. While the practical use of DMDΔ52-Model is limited to the validation to our gene editing protocol, DMD-UTRN-Model presents a possible therapeutic gene edition target as well as a useful positive control in the screening of utrophin overexpression drugs.

Keywords: expression, in-vitro, mouse model, muscle, mutations, phenotype, quantification, sarcolemma, therapy, Utrophin up-regulation


Berishvili E, Casiraghi F, Amarelli C, Scholz H, Piemonti L, Berney T, Montserrat N, (2021). Mini-organs forum: how to advance organoid technology to organ transplant community TRANSPLANT INTERNATIONAL 34, 1588-1593

The generation of human mini-organs, the so-called organoids, is one of the biggest scientific advances in regenerative medicine. This technology exploits traditional three-dimensional culture techniques that support cell-autonomous self-organization responses of stem cells to derive micrometer to millimeter size versions of human organs. The convergence of the organoid technology with organ transplantation is still in its infancy but this alliance is expected to open new venues to change the way we conduct both transplant and organoid research. In this Forum we provide a summary on early achievements facilitating organoid derivation and culture. We further discuss on early advances of organoid transplantation also offering a comprehensive overview of current limitations and challenges to instruct organoid maturation. We expect that this Forum sets the ground for initial discussions between stem cell biologists, bioengineers, and the transplant community to better direct organoid basic research to advance the organ transplantation field.

Keywords: in-vitro, matrix, mice, organoids, regenerative medicine, vivo, Intestinal stem-cell, Organoids, Regenerative medicine


Pilat N, Lefsihane K, Brouard S, Kotsch K, Falk C, Steiner R, Thaunat O, Fusil F, Montserrat N, Amarelli C, Casiraghi F, (2021). T- and B-cell therapy in solid organ transplantation: current evidence and future expectations TRANSPLANT INTERNATIONAL 34, 1594-1606

Cell therapy has emerged as an attractive therapeutic option in organ transplantation. During the last decade, the therapeutic potency of Treg immunotherapy has been shown in various preclinical animal models and safety was demonstrated in first clinical trials. However, there are still critical open questions regarding specificity, survival, and migration to the target tissue so the best Treg population for infusion into patients is still under debate. Recent advances in CAR technology hold the promise for Treg-functional superiority. Another exciting strategy is the generation of B-cell antibody receptor (BAR) Treg/cytotoxic T cells to specifically regulate or deplete alloreactive memory B cells. Finally, B cells are also capable of immune regulation, making them promising candidates for immunomodulatory therapeutic strategies. This article summarizes available literature on cell-based innovative therapeutic approaches aiming at modulating alloimmune response for transplantation. Crucial areas of investigation that need a joined effort of the transplant community for moving the field toward successful achievement of tolerance are highlighted.

Keywords: allograft, autoimmune, b-cell antibody receptor t cells, chimeric antigen receptor tregs, expansion, expression, identification, infectious tolerance, mouse, prevention, regulatory b cells, regulatory t cells, signature, B-cell antibody receptor t cells, Chimeric antigen receptor tregs, Kidney-transplantation, Regulatory b cells, Regulatory t cells


Calistri A, Luganini A, Mognetti B, Elder E, Sibille G, Conciatori V, Del Vecchio C, Sainas S, Boschi D, Montserrat N, Mirazimi A, Lolli ML, Gribaudo G, Parolin C, (2021). The new generation hdhodh inhibitor meds433 hinders the in vitro replication of sars-cov-2 and other human coronaviruses Microorganisms 9,

Although coronaviruses (CoVs) have long been predicted to cause zoonotic diseases and pandemics with high probability, the lack of effective anti-pan-CoVs drugs rapidly usable against the emerging SARS-CoV-2 actually prevented a promptly therapeutic intervention for COVID-19. Development of host-targeting antivirals could be an alternative strategy for the control of emerging CoVs infections, as they could be quickly repositioned from one pandemic event to another. To contribute to these pandemic preparedness efforts, here we report on the broad-spectrum CoVs antiviral activity of MEDS433, a new inhibitor of the human dihydroorotate dehydrogenase (hDHODH), a key cellular enzyme of the de novo pyrimidine biosynthesis pathway. MEDS433 in-hibited the in vitro replication of hCoV-OC43 and hCoV-229E, as well as of SARS-CoV-2, at low nanomolar range. Notably, the anti-SARS-CoV-2 activity of MEDS433 against SARS-CoV-2 was also observed in kidney organoids generated from human embryonic stem cells. Then, the antiviral activity of MEDS433 was reversed by the addition of exogenous uridine or the product of hDHODH, the orotate, thus confirming hDHODH as the specific target of MEDS433 in hCoVs-infected cells. Taken together, these findings suggest MEDS433 as a potential candidate to develop novel drugs for COVID-19, as well as broad-spectrum antiviral agents exploitable for future CoVs threats.

Keywords: antiviral activity, biosynthesis, broad-spectrum antiviral, combination treatment, coronavirus, dipyridamole, hdhodh inhibitor, organoids, pyrimidine, pyrimidine biosynthesis, sars-cov-2, target, virus-infection, Antiviral activ-ity, Broad-spectrum antiviral, Combination treatment, Coronavirus, Gene-expression, Hdhodh inhibitor, Organoids, Pyrimidine biosynthesis, Sars-cov-2


Lovell-Badge R, Anthony E, Barker RA, Bubela T, Brivanlou AH, Carpenter M, Charo RA, Clark A, Clayton E, Cong Y, Daley GQ, Fu J, Fujita M, Greenfield A, Goldman SA, Hill L, Hyun I, Isasi R, Kahn J, Kato K, Kim JS, Kimmelman J, Knoblich JA, Mathews D, Montserrat N, Mosher J, Munsie M, Nakauchi H, Naldini L, Naughton G, Niakan K, Ogbogu U, Pedersen R, Rivron N, Rooke H, Rossant J, Round J, Saitou M, Sipp D, Steffann J, Sugarman J, Surani A, Takahashi J, Tang F, Turner L, Zettler PJ, Zhai X, (2021). ISSCR Guidelines for Stem Cell Research and Clinical Translation: The 2021 update Stem Cell Reports 16, 1398-1408

The International Society for Stem Cell Research has updated its Guidelines for Stem Cell Research and Clinical Translation in order to address advances in stem cell science and other relevant fields, together with the associated ethical, social, and policy issues that have arisen since the last update in 2016. While growing to encompass the evolving science, clinical applications of stem cells, and the increasingly complex implications of stem cell research for society, the basic principles underlying the Guidelines remain unchanged, and they will continue to serve as the standard for the field and as a resource for scientists, regulators, funders, physicians, and members of the public, including patients. A summary of the key updates and issues is presented here.

Keywords: self-organization, Human embryo research


Hyun I, Clayton EW, Cong Y, Fujita M, Goldman SA, Hill LR, Monserrat N, Nakauchi H, Pedersen RA, Rooke HM, Takahashi J, Knoblich JA, (2021). ISSCR guidelines for the transfer of human pluripotent stem cells and their direct derivatives into animal hosts Stem Cell Reports 16, 1409-1415

The newly revised 2021 ISSCR Guidelines for Stem Cell Research and Clinical Translation includes scientific and ethical guidance for the transfer of human pluripotent stem cells and their direct derivatives into animal models. In this white paper, the ISSCR subcommittee that drafted these guidelines for research involving the use of nonhuman embryos and postnatal animals explains and summarizes their recommendations.

Keywords: animal research, chimeric embryos, isscr guidelines, Animal research, Chimeric embryos, Isscr guidelines, Stem cell chimeras


Dhillon P, Park J, Hurtado del Pozo C, Li L, Doke T, Huang S, Zhao J, Kang HM, Shrestra R, Balzer MS, Chatterjee S, Prado P, Han SY, Liu H, Sheng X, Dierickx P, Batmanov K, Romero JP, Prósper F, Li M, Pei L, Kim J, Montserrat N, Susztak K, (2021). The Nuclear Receptor ESRRA Protects from Kidney Disease by Coupling Metabolism and Differentiation Cell Metabolism 33, 379-394.e8

© 2020 Elsevier Inc. Using single-cell RNA sequencing, Susztak and colleagues, show major changes in cell diversity in mouse models of kidney fibrosis. Proximal tubule (PT) cells are highly vulnerable to dysfunction in fibrosis and show altered differentiation. Nuclear receptors such as ESRRA maintain both PT cell metabolism and differentiation by directly regulating PT-cell-specific genes.

Keywords: chronic kidney disease, esrra, fatty-acid oxidation, fibrosis, kidney, organoids, ppara, proximal tubule cells, single-cell atac sequencing, Chronic kidney disease, Esrra, Fatty-acid oxidation, Fibrosis, Kidney, Organoids, Ppara, Proximal tubule cells, Single-cell atac sequencing, Single-cell rna sequencing


Selfa IL, Gallo M, Montserrat N, Garreta E, (2021). Directed Differentiation of Human Pluripotent Stem Cells for the Generation of High-Order Kidney Organoids Methods In Molecular Biology 2258, 171-192

© 2021, The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature. Our understanding in the inherent properties of human pluripotent stem cells (hPSCs) have made possible the development of differentiation procedures to generate three-dimensional tissue-like cultures, so-called organoids. Here we detail a stepwise methodology to generate kidney organoids from hPSCs. This is achieved through direct differentiation of hPSCs in two-dimensional monolayer culture toward the posterior primitive streak fate, followed by induction of intermediate mesoderm-committed cells, which are further aggregated and cultured in three-dimensions to generate kidney organoids containing segmented nephron-like structures in a process that lasts 20 days. We also provide a concise description on how to assess renal commitment during the time course of kidney organoid generation. This includes the use of flow cytometry and immunocytochemistry analyses for the detection of specific renal differentiation markers.

Keywords: 2d monolayer, 3d organotypic culture, differentiation, flow cytometry, human pluripotent stem cells, immunocytochemistry, intermediate mesoderm, kidney organoid, nephron progenitor cells, nephrons, primitive streak, 2d monolayer, 3d organotypic culture, Differentiation, Flow cytometry, Human pluripotent stem cells, Immunocytochemistry, Intermediate mesoderm, Kidney organoid, Nephron progenitor cells, Nephrons, Primitive streak, Tissue


Monteil V, Dyczynski M, Lauschke VM, Kwon H, Wirnsberger G, Youhanna S, Zhang H, Slutsky AS, Hurtado del Pozo C, Horn M, Montserrat N, Penninger JM, Mirazimi A, (2021). Human soluble ACE2 improves the effect of remdesivir in SARS-CoV-2 infection EMBO Molecular Medicine 13,

© 2020 The Authors. Published under the terms of the CC BY 4.0 license There is a critical need for safe and effective drugs for COVID-19. Only remdesivir has received authorization for COVID-19 and has been shown to improve outcomes but not decrease mortality. However, the dose of remdesivir is limited by hepatic and kidney toxicity. ACE2 is the critical cell surface receptor for SARS-CoV-2. Here, we investigated additive effect of combination therapy using remdesivir with recombinant soluble ACE2 (high/low dose) on Vero E6 and kidney organoids, targeting two different modalities of SARS-CoV-2 life cycle: cell entry via its receptor ACE2 and intracellular viral RNA replication. This combination treatment markedly improved their therapeutic windows against SARS-CoV-2 in both models. By using single amino-acid resolution screening in haploid ES cells, we report a singular critical pathway required for remdesivir toxicity, namely, Adenylate Kinase 2. The data provided here demonstrate that combining two therapeutic modalities with different targets, common strategy in HIV treatment, exhibit strong additive effects at sub-toxic concentrations. Our data lay the groundwork for the study of combinatorial regimens in future COVID-19 clinical trials.

Keywords: clinical trial, combination therapy, covid-19, Clinical trial, Combination therapy, Covid-19, Treatment


Garreta, Elena, Kamm, Roger D., Chuva de Sousa Lopes, Susana M., Lancaster, Madeline A., Weiss, Ron, Trepat, Xavier, Hyun, Insoo, Montserrat, Nuria, (2021). Rethinking organoid technology through bioengineering NATURE MATERIALS 20, 145-155

In recent years considerable progress has been made in the development of faithful procedures for the differentiation of human pluripotent stem cells (hPSCs). An important step in this direction has also been the derivation of organoids. This technology generally relies on traditional three-dimensional culture techniques that exploit cell-autonomous self-organization responses of hPSCs with minimal control over the external inputs supplied to the system. The convergence of stem cell biology and bioengineering offers the possibility to provide these stimuli in a controlled fashion, resulting in the development of naturally inspired approaches to overcome major limitations of this nascent technology. Based on the current developments, we emphasize the achievements and ongoing challenges of bringing together hPSC organoid differentiation, bioengineering and ethics. This Review underlines the need for providing engineering solutions to gain control of self-organization and functionality of hPSC-derived organoids. We expect that this knowledge will guide the community to generate higher-grade hPSC-derived organoids for further applications in developmental biology, drug screening, disease modelling and personalized medicine. This Review provides an overview of bioengineering technologies that can be harnessed to facilitate the culture, self-organization and functionality of human pluripotent stem cell-derived organoids.

Keywords: Differentiation, Embryonic-tissues, Extracellular-matrix, In-vitro, Kidney organoids, Model, Neural-tube, Pluripotent stem-cells, Reconstitution, Self-organization


Kyndiah, A., Leonardi, F., Tarantino, C., Cramer, T., Millan-Solsona, R., Garreta, E., Montserrat, N., Mas-Torrent, M., Gomila, G., (2020). Bioelectronic recordings of cardiomyocytes with accumulation mode electrolyte gated organic field effect transistors Biosensors and Bioelectronics 150, 111844

Organic electronic materials offer an untapped potential for novel tools for low-invasive electrophysiological recording and stimulation devices. Such materials combine semiconducting properties with tailored surface chemistry, elastic mechanical properties and chemical stability in water. In this work, we investigate solution processed Electrolyte Gated Organic Field Effect Transistors (EGOFETs) based on a small molecule semiconductor. We demonstrate that EGOFETs based on a blend of soluble organic semiconductor 2,8-Difluoro-5,11-bis(triethylsilylethynyl)anthradithiophene (diF-TES-ADT) combined with an insulating polymer show excellent sensitivity and long-term recording under electrophysiological applications. Our devices can stably record the extracellular potential of human pluripotent stem cell derived cardiomyocyte cells (hPSCs-CMs) for several weeks. In addition, cytotoxicity tests of pharmaceutical drugs, such as Norepinephrine and Verapamil was achieved with excellent sensitivity. This work demonstrates that organic transistors based on organic blends are excellent bioelectronics transducer for extracellular electrical recording of excitable cells and tissues thus providing a valid alternative to electrochemical transistors.

Keywords: Bioelectronics, Cardiac cells, Organic electronics, Organic field effect transistors, Organic semiconducting blend


Hoogduijn, M.J., Montserrat, N., van der Laan, L.J.W., Dazzi, F., Perico, N., Kastrup, J., Gilbo, N., Ploeg, R.J., Roobrouck, V., Casiraghi, F., Johnson, C.L., Franquesa, M., Dahlke, M.H., Massey, E., Hosgood, S., Reinders, M.E.J., (2020). The emergence of regenerative medicine in organ transplantation: 1st European Cell Therapy and Organ Regeneration Section meeting Transplant International 33, (8), 833-840

Regenerative medicine is emerging as a novel field in organ transplantation. In September 2019, the European Cell Therapy and Organ Regeneration Section (ECTORS) of the European Society for Organ Transplantation (ESOT) held its first meeting to discuss the state-of-the-art of regenerative medicine in organ transplantation. The present article highlights the key areas of interest and major advances in this multidisciplinary field in organ regeneration and discusses its implications for the future of organ transplantation.

Keywords: Cell therapy, Machine perfusion, Mesenchymal stromal cell, Organoid, Regeneration, Transplantation


Lynch, Cian J., Bernad, Raquel, Martínez-Val, Ana, Shahbazi, Marta N., Nóbrega-Pereira, Sandrina, Calvo, Isabel, Blanco-Aparicio, Carmen, Tarantino, Carolina, Garreta, Elena, Richart-Ginés, Laia, Alcazar, Noelia, Graña-Castro, Osvaldo, Gómez-Lopez, Gonzalo, Aksoy, Irene, Muñoz-Martín, Maribel, Martinez, Sonia, Ortega, Sagrario, Prieto, Susana, Simboeck, Elisabeth, Camasses, Alain, Stephan-Otto Attolini, Camille, Fernandez, Agustin F., Sierra, Marta I., Fraga, Mario F., Pastor, Joaquin, Fisher, Daniel, Montserrat, Nuria, Savatier, Pierre, Muñoz, Javier, Zernicka-Goetz, Magdalena, Serrano, Manuel, (2020). Global hyperactivation of enhancers stabilizes human and mouse naive pluripotency through inhibition of CDK8/19 Mediator kinases Nature Cell Biology 22, (10), 1223-1238

Pluripotent stem cells (PSCs) transition between cell states in vitro, reflecting developmental changes in the early embryo. PSCs can be stabilized in the naive state by blocking extracellular differentiation stimuli, particularly FGF–MEK signalling. Here, we report that multiple features of the naive state in human and mouse PSCs can be recapitulated without affecting FGF–MEK signalling or global DNA methylation. Mechanistically, chemical inhibition of CDK8 and CDK19 (hereafter CDK8/19) kinases removes their ability to repress the Mediator complex at enhancers. CDK8/19 inhibition therefore increases Mediator-driven recruitment of RNA polymerase II (RNA Pol II) to promoters and enhancers. This efficiently stabilizes the naive transcriptional program and confers resistance to enhancer perturbation by BRD4 inhibition. Moreover, naive pluripotency during embryonic development coincides with a reduction in CDK8/19. We conclude that global hyperactivation of enhancers drives naive pluripotency, and this can be achieved in vitro by inhibiting CDK8/19 kinase activity. These principles may apply to other contexts of cellular plasticity.


Zoufaly, Alexander, Poglitsch, Marko, Aberle, Judith H., Hoepler, Wolfgang, Seitz, Tamara, Traugott, Marianna, Grieb, Alexander, Pawelka, Erich, Laferl, Hermann, Wenisch, Christoph, Neuhold, Stephanie, Haider, Doris, Stiasny, Karin, Bergthaler, Andreas, Puchhammer-Stoeckl, Elisabeth, Mirazimi, Ali, Montserrat, Nuria, Zhang, Haibo, Slutsky, Arthur S., Penninger, Josef M., (2020). Human recombinant soluble ACE2 in severe COVID-19 The Lancet Respiratory Medicine 8, (11), 1154-1158

Angiotensin converting enzyme 2 (ACE2) is the crucial severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) receptor and protects multiple tissues, including the lung, from injury as a regulator of the renin–angiotensin system.1 Therefore, ACE2 has become the focus of COVID-19 research and a plethora of drug development efforts. Among the novel compounds under development is human recombinant soluble ACE2 (hrsACE2 [APN01; Apeiron Biologics, Vienna, Austria]), which has two mechanisms of action that theoretically should be of benefit in COVID-19.2 The first involves binding the viral spike protein and thereby neutralising SARS-CoV-2,3 and the second is minimising injury to multiple organs, including the lungs, kidneys, and heart, because of unabated renin–angiotensin system hyperactivation and increased angiotensin II concentrations.4, 5, 6 hrsACE2 has been tested in 89 patients, namely in healthy volunteers in phase 1 studies and in patients with acute respiratory distress syndrome (ARDS) in phase 2 clinical studies, with a good safety profile.7, 8 Moreover, hrsACE2 can reduce SARS-CoV-2 load by a factor of 1000–5000 in in-vitro cell-culture experiments and engineered organoids, directly demonstrating that ACE2 can effectively neutralise SARS-CoV-2.3 We describe in this Case Report the first course of treatment with hrsACE2 of a patient with severe COVID-19.


Monteil, Vanessa, Dyczynski, Matheus, Lauschke, Volker M., Kwon, Hyesoo, Wirnsberger, Gerald, Youhanna, Sonia, Zhang, Haibo, Slutsky, Arthur S., Hurtado del Pozo, Carmen, Horn, Moritz, Montserrat, Nuria, Penninger, Josef M., Mirazimi, Ali, (2020). Human soluble ACE2 improves the effect of remdesivir in SARS-CoV-2 infection EMBO Molecular Medicine , e13426

There is a critical need for safe and effective drugs for COVID-19. Only remdesivir has received authorization for COVID-19 and has been shown to improve outcomes but not decrease mortality. However, the dose of remdesivir is limited by hepatic and kidney toxicity. ACE2 is the critical cell surface receptor for SARS-CoV-2. Here, we investigated additive effect of combination therapy using remdesivir with recombinant soluble ACE2 (high/low dose) on Vero E6 and kidney organoids, targeting two different modalities of SARS-CoV-2 life cycle: cell entry via its receptor ACE2 and intracellular viral RNA replication. This combination treatment markedly improved their therapeutic windows against SARS-CoV-2 in both models. By using single amino-acid resolution screening in haploid ES cells, we report a singular critical pathway required for remdesivir toxicity, namely, Adenylate Kinase 2. The data provided here demonstrate that combining two therapeutic modalities with different targets, common strategy in HIV treatment, exhibit strong additive effects at sub-toxic concentrations. Our data lay the groundwork for the study of combinatorial regimens in future COVID-19 clinical trials.


Monteil, Vanessa, Kwon, Hyesoo, Prado, Patricia, Hagelkrüys, Astrid, Wimmer, Reiner A., Stahl, Martin, Leopoldi, Alexandra, Garreta, Elena, Hurtado Del Pozo, Carmen, Prosper, Felipe, Romero, Juan Pablo, Wirnsberger, Gerald, Zhang, Haibo, Slutsky, Arthur S., Conder, Ryan, Montserrat, Nuria, Mirazimi, Ali, Penninger, Josef M., (2020). Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2 Cell 181, (4), 905-913.e7

We have previously provided the first genetic evidence that angiotensin converting enzyme 2 (ACE2) is the critical receptor for severe acute respiratory syndrome coronavirus (SARS-CoV), and ACE2 protects the lung from injury, providing a molecular explanation for the severe lung failure and death due to SARS-CoV infections. ACE2 has now also been identified as a key receptor for SARS-CoV-2 infections, and it has been proposed that inhibiting this interaction might be used in treating patients with COVID-19. However, it is not known whether human recombinant soluble ACE2 (hrsACE2) blocks growth of SARS-CoV-2. Here, we show that clinical grade hrsACE2 reduced SARS-CoV-2 recovery from Vero cells by a factor of 1,000-5,000. An equivalent mouse rsACE2 had no effect. We also show that SARS-CoV-2 can directly infect engineered human blood vessel organoids and human kidney organoids, which can be inhibited by hrsACE2. These data demonstrate that hrsACE2 can significantly block early stages of SARS-CoV-2 infections.

Keywords: COVID-19, Angiotensin converting enzyme 2, Blood vessels, Human organoids, Kidney, Severe acute respiratory syndrome coronavirus, Spike glycoproteins, Treatment


Cilloni, Daniela, Petiti, Jessica, Campia, Valentina, Podestà , Marina, Squillario, Margherita, Montserrat, Nuria, Bertaina, Alice, Sabatini, Federica, Carturan, Sonia, Berger, Massimo, Saglio, Francesco, Bandini, Giuseppe, Bonifazi, Francesca, Fagioli, Franca, Moretta, Lorenzo, Saglio, Giuseppe, Verri, Alessandro, Barla, Annalisa, Locatelli, Franco, Frassoni, Francesco, (2020). Transplantation induces profound changes in the transcriptional asset of hematopoietic stem cells: Identification of specific signatures using machine learning techniques Journal of Clinical Medicine 9, (6), 1670

During the phase of proliferation needed for hematopoietic reconstitution following transplantation, hematopoietic stem/progenitor cells (HSPC) must express genes involved in stem cell self-renewal. We investigated the expression of genes relevant for self-renewal and expansion of HSPC (operationally defined as CD34+ cells) in steady state and after transplantation. Specifically, we evaluated the expression of ninety-one genes that were analyzed by real-time PCR in CD34+ cells isolated from (i) 12 samples from umbilical cord blood (UCB); (ii) 15 samples from bone marrow healthy donors; (iii) 13 samples from bone marrow after umbilical cord blood transplant (UCBT); and (iv) 29 samples from patients after transplantation with adult hematopoietic cells. The results show that transplanted CD34+ cells from adult cells acquire an asset very different from transplanted CD34+ cells from cord blood. Multivariate machine learning analysis (MMLA) showed that four specific gene signatures can be obtained by comparing the four types of CD34+ cells. In several, but not all cases, transplanted HSPC from UCB overexpress reprogramming genes. However, these remarkable changes do not alter the commitment to hematopoietic lineage. Overall, these results reveal undisclosed aspects of transplantation biology.

Keywords: Hematopoietic stem/progenitor cell, Cord blood, Stem cell transplantation


Garreta, Elena, Prado, Patricia, Tarantino, Carolina, Oria, Roger, Fanlo, Lucia, Martí, Elisa, Zalvidea, Dobryna, Trepat, Xavier, Roca-Cusachs, Pere, Gavaldà -Navarro, Aleix, Cozzuto, Luca, Campistol, Josep M., Izpisúa Belmonte, Juan Carlos, Hurtado del Pozo, Carmen, Montserrat, Nuria, (2019). Fine tuning the extracellular environment accelerates the derivation of kidney organoids from human pluripotent stem cells Nature Materials 18, 397-405

The generation of organoids is one of the biggest scientific advances in regenerative medicine. Here, by lengthening the time that human pluripotent stem cells (hPSCs) were exposed to a three-dimensional microenvironment, and by applying defined renal inductive signals, we generated kidney organoids that transcriptomically matched second-trimester human fetal kidneys. We validated these results using ex vivo and in vitro assays that model renal development. Furthermore, we developed a transplantation method that utilizes the chick chorioallantoic membrane. This approach created a soft in vivo microenvironment that promoted the growth and differentiation of implanted kidney organoids, as well as providing a vascular component. The stiffness of the in ovo chorioallantoic membrane microenvironment was recapitulated in vitro by fabricating compliant hydrogels. These biomaterials promoted the efficient generation of renal vesicles and nephron structures, demonstrating that a soft environment accelerates the differentiation of hPSC-derived kidney organoids.


Sample, Matthew, Boulicault, Marion, Allen, Caley, Bashir, Rashid, Hyun, Insoo, Levis, Megan, Lowenthal, Caroline, Mertz, David, Montserrat, Nuria, Palmer, Megan J., Saha, Krishanu, Zartman, Jeremiah, (2019). Multi-cellular engineered living systems: building a community around responsible research on emergence Biofabrication 11, (4), 043001

Ranging from miniaturized biological robots to organoids, multi-cellular engineered living systems (M-CELS) pose complex ethical and societal challenges. Some of these challenges, such as how to best distribute risks and benefits, are likely to arise in the development of any new technology. Other challenges arise specifically because of the particular characteristics of M-CELS. For example, as an engineered living system becomes increasingly complex, it may provoke societal debate about its moral considerability, perhaps necessitating protection from harm or recognition of positive moral and legal rights, particularly if derived from cells of human origin. The use of emergence-based principles in M-CELS development may also create unique challenges, making the technology difficult to fully control or predict in the laboratory as well as in applied medical or environmental settings. In response to these challenges, we argue that the M-CELS community has an obligation to systematically address the ethical and societal aspects of research and to seek input from and accountability to a broad range of stakeholders and publics. As a newly developing field, M-CELS has a significant opportunity to integrate ethically responsible norms and standards into its research and development practices from the start. With the aim of seizing this opportunity, we identify two general kinds of salient ethical issues arising from M-CELS research, and then present a set of commitments to and strategies for addressing these issues. If adopted, these commitments and strategies would help define M-CELS as not only an innovative field, but also as a model for responsible research and engineering.

Keywords: Ethics, Society, Governance, Emergence, Moral considerability, Responsible innovation


Garreta, Elena, Montserrat, Nuria, Belmonte, Juan Carlos Izpisua, (2018). Kidney organoids for disease modeling Oncotarget 9, (16), 12552-12553

Garreta, Elena, Sanchez, Sonia, Lajara, Jeronimo, Montserrat, Nuria, Belmonte, Juan Carlos Izpisua, (2018). Roadblocks in the path of iPSC to the vlinic Current Transplantation Reports 5, (1), 14-18

PURPOSE OF REVIEW: The goal of this paper is to highlight the major challenges in the translation of human pluripotent stem cells into a clinical setting. RECENT FINDINGS: Innate features from human induced pluripotent stem cells (hiPSCs) positioned these patient-specific cells as an unprecedented cell source for regenerative medicine applications. Immunogenicity of differentiated iPSCs requires more research towards the definition of common criteria for the evaluation of innate and host immune responses as well as in the generation of standardized protocols for iPSC generation and differentiation. The coming years will resolve ongoing clinical trials using both human embryonic stem cells (hESCs) and hiPSCs providing exciting information for the optimization of potential clinical applications of stem cell therapies. SUMMARY: Rapid advances in the field of iPSCs generated high expectations in the field of regenerative medicine. Understanding therapeutic applications of iPSCs certainly needs further investigation on autologous/allogenic iPSC transplantation.


Latorre, Ernest, Kale, Sohan, Casares, Laura, Gómez-González, Manuel, Uroz, Marina, Valon, Léo, Nair, Roshna V., Garreta, Elena, Montserrat, Nuria, del Campo, Aránzazu, Ladoux, Benoit, Arroyo, Marino, Trepat, Xavier, (2018). Active superelasticity in three-dimensional epithelia of controlled shape Nature 563, (7730), 203-208

Fundamental biological processes are carried out by curved epithelial sheets that enclose a pressurized lumen. How these sheets develop and withstand three-dimensional deformations has remained unclear. Here we combine measurements of epithelial tension and shape with theoretical modelling to show that epithelial sheets are active superelastic materials. We produce arrays of epithelial domes with controlled geometry. Quantification of luminal pressure and epithelial tension reveals a tensional plateau over several-fold areal strains. These extreme strains in the tissue are accommodated by highly heterogeneous strains at a cellular level, in seeming contradiction to the measured tensional uniformity. This phenomenon is reminiscent of superelasticity, a behaviour that is generally attributed to microscopic material instabilities in metal alloys. We show that in epithelial cells this instability is triggered by a stretch-induced dilution of the actin cortex, and is rescued by the intermediate filament network. Our study reveals a type of mechanical behaviour—which we term active superelasticity—that enables epithelial sheets to sustain extreme stretching under constant tension.


Hernandez-Benitez, R., Llanos Martinez-Martinez, M., Lajara, J., Magistretti, P., Montserrat, N., Izpisua Belmonte, Juan Carlos, (2018). At the heart of genome editing and cardiovascular diseases Circulation Research 123, (2), 221-223

Cardiovascular disease (CVD) is still the leading cause of death worldwide, but the knowledge and technologies for counteracting this disease may already be in our hands. Scientific advances over the past few years, such as the isolation and differentiation of induced pluripotent stem cells, and the development of gene-editing tools, have enabled us to model CVD, but more importantly, may represent tools for CVD early diagnosis, patient stratification, and treatment.


Niederberger, Craig, Pellicer, Antonio, Cohen, Jacques, Gardner, David K., Palermo, Gianpiero D., O'Neill, Claire L., Chow, Stephen, Rosenwaks, Zev, Cobo, Ana, Swain, Jason E., Schoolcraft, William B., Frydman, René, Bishop, Lauren A., Aharon, Davora, Gordon, Catherine, New, Erika, Decherney, Alan, Tan, Seang Lin, Paulson, Richard J., Goldfarb, James M., Brännström, Mats, Donnez, Jacques, Silber, Sherman, Dolmans, Marie-Madeleine, Simpson, Joe Leigh, Handyside, Alan H., Munné, Santiago, Eguizabal, Cristina, Montserrat, Nuria, Izpisua Belmonte, Juan Carlos, Trounson, Alan, Simon, Carlos, Tulandi, Togas, Giudice, Linda C., Norman, Robert J., Hsueh, Aaron J., Sun, Yingpu, Laufer, Neri, Kochman, Ronit, Eldar-Geva, Talia, Lunenfeld, Bruno, Ezcurra, Diego, D'Hooghe, Thomas, Fauser, Bart C. J. M., Tarlatzis, Basil C., Meldrum, David R., Casper, Robert F., Fatemi, Human M., Devroey, Paul, Galliano, Daniela, Wikland, Matts, Sigman, Mark, Schoor, Richard A., Goldstein, Marc, Lipshultz, Larry I., Schlegel, Peter N., Hussein, Alayman, Oates, Robert D., Brannigan, Robert E., Ross, Heather E., Pennings, Guido, Klock, Susan C., Brown, Simon, Van Steirteghem, André, Rebar, Robert W., LaBarbera, Andrew R., (2018). Forty years of IVF Fertility and Sterility 110, (2), 185-324

This monograph, written by the pioneers of IVF and reproductive medicine, celebrates the history, achievements, and medical advancements made over the last 40 years in this rapidly growing field.


Hurtado del Pozo, Carmen, Garreta, Elena, Izpisúa Belmonte, Juan Carlos, Montserrat, Nuria, (2018). Modeling epigenetic modifications in renal development and disease with organoids and genome editing Disease Models & Mechanisms 11, (11), 035048

Understanding epigenetic mechanisms is crucial to our comprehension of gene regulation in development and disease. In the past decades, different studies have shown the role of epigenetic modifications and modifiers in renal disease, especially during its progression towards chronic and end-stage renal disease. Thus, the identification of genetic variation associated with chronic kidney disease has resulted in better clinical management of patients. Despite the importance of these findings, the translation of genotype–phenotype data into gene-based medicine in chronic kidney disease populations still lacks faithful cellular or animal models that recapitulate the key aspects of the human kidney. The latest advances in the field of stem cells have shown that it is possible to emulate kidney development and function with organoids derived from human pluripotent stem cells. These have successfully recapitulated not only kidney differentiation, but also the specific phenotypical traits related to kidney function. The combination of this methodology with CRISPR/Cas9 genome editing has already helped researchers to model different genetic kidney disorders. Nowadays, CRISPR/Cas9-based approaches also allow epigenetic modifications, and thus represent an unprecedented tool for the screening of genetic variants, epigenetic modifications or even changes in chromatin structure that are altered in renal disease. In this Review, we discuss these technical advances in kidney modeling, and offer an overview of the role of epigenetic regulation in kidney development and disease.


Garreta, E., González, F., Montserrat, N., (2018). Studying kidney disease using tissue and genome engineering in human pluripotent stem cells Nephron 138, 48-59

Kidney morphogenesis and patterning have been extensively studied in animal models such as the mouse and zebrafish. These seminal studies have been key to define the molecular mechanisms underlying this complex multistep process. Based on this knowledge, the last 3 years have witnessed the development of a cohort of protocols allowing efficient differentiation of human pluripotent stem cells (hPSCs) towards defined kidney progenitor populations using two-dimensional (2D) culture systems or through generating organoids. Kidney organoids are three-dimensional (3D) kidney-like tissues, which are able to partially recapitulate kidney structure and function in vitro. The current possibility to combine state-of-the art tissue engineering with clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated systems 9 (Cas9)-mediated genome engineering provides an unprecedented opportunity for studying kidney disease with hPSCs. Recently, hPSCs with genetic mutations introduced through CRISPR/Cas9-mediated genome engineering have shown to produce kidney organoids able to recapitulate phenotypes of polycystic kidney disease and glomerulopathies. This mini review provides an overview of the most recent advances in differentiation of hPSCs into kidney lineages, and the latest implementation of the CRISPR/Cas9 technology in the organoid setting, as promising platforms to study human kidney development and disease.

Keywords: Clustered regularly interspaced short palindromic repeats/CRISPR-associated systems 9, Disease modeling, Gene editing, Human pluripotent stem cells, Kidney genetics, Tissue engineering


Garreta, Elena, Oria, Roger, Tarantino, Carolina, Pla-Roca, Mateu, Prado, Patricia, Fernández-Avilés, Francisco, Campistol, Josep Maria, Samitier, Josep, Montserrat, Nuria, (2017). Tissue engineering by decellularization and 3D bioprinting Materials Today , 20, (4), 166-178

Discarded human donor organs have been shown to provide decellularized extracellular matrix (dECM) scaffolds suitable for organ engineering. The quest for appropriate cell sources to satisfy the need of multiple cells types in order to fully repopulate human organ-derived dECM scaffolds has opened new venues for the use of human pluripotent stem cells (hPSCs) for recellularization. In addition, three-dimensional (3D) bioprinting techniques are advancing towards the fabrication of biomimetic cell-laden biomaterial constructs. Here, we review recent progress in decellularization/recellularization and 3D bioprinting technologies, aiming to fabricate autologous tissue grafts and organs with an impact in regenerative medicine.


Climent, A. M., Hernandez-Romero, I., Guillem, M. S., Montserrat, N., Fernandez, M. E., Atienza, F., Fernandez-Aviles, F., (2017). High resolution microscopic optical mapping of anatomical and functional reentries in human cardiac cell cultures IEEE Conference Publications Computing in Cardiology Conference (CinC), 2016 , IEEE (Vancouver, Canada) 43, 233-236

Anatomical and/or functional reentries have been proposed as one of the main mechanism of perpetuation of cardiac fibrillation processes. However, technical limitations have difficult the characterization of those reentries and are hampering the development of effective anti-arrhythmic treatments. The goal of this study is to present a novel technology to map with high resolution the center of fibrillation drivers in order to characterize the mechanisms of reentry. Cell cultures of human cardiac-like cells differentiated from pluripotent stem cells were analyzed with a novel microscopic optical mapping system. The pharmacological response to verapamil administration of each type of reentry was analyzed. In all analyzed cell cultures, a reentry was identified as the mechanism of maintenance of the arrhythmia. Interestingly, the administration of verapamil produced opposite effects on activation rate depending on the mechanisms of reentry (i.e. anatomical or functional). Microscopic optical mapping of reentries allows the identification of perpetuation mechanisms which has been demonstrated to be linked with different pharmacological response.

Keywords: Stem cells, Rotors, Microscopy, Optical filters, Calcium, Optical microscopy, Biomedical optical imaging


Garreta, Elena, Marco, Andrés, Eguizábal, Cristina, Tarantino, Carolina, Samitier, Mireia, Badiola, Maider, Gutiérrez, Joaquín, Samitier, Josep, Montserrat, Nuria, (2017). Pluripotent stem cells and skeletal muscle differentiation: Challenges and immediate applications The Plasticity of Skeletal Muscle: From Molecular Mechanism to Clinical Applications (ed. Sakuma, Kunihiro), Springer Singapore (Singapore, Singapore) 2018, 1-35

Recent advances in the generation of skeletal muscle derivatives from pluripotent stem cells (PSCs) provide innovative tools for muscle development, disease modeling, and cell replacement therapies. Here, we revise major relevant findings that have contributed to these advances in the field, by the revision of how early findings using mouse embryonic stem cells (ESCs) set the bases for the derivation of skeletal muscle cells from human pluripotent stem cells (hPSCs) and patient-derived human-induced pluripotent stem cells (hiPSCs) to the use of genome editing platforms allowing for disease modeling in the petri dish.

Keywords: Pluripotent stem cells, Differentiation, Genome editing, Disease modeling


Xia, Yun, Montserrat, Nuria, Campistol, Josep M., Izpisua Belmonte, Juan Carlos, Remuzzi, Giuseppe, Williams, David F., (2017). Lineage reprogramming toward kidney regeneration Kidney Transplantation, Bioengineering and Regeneration (ed. Orlando, G., Remuzzi, Giuseppe, Williams, David F.), Academic Press (London, UK) , 1167-1175

We have known for decades that it is possible to switch the phenotype of one somatic cell type into another. Such epigenetic rewiring processes can be artificially managed and even reversed by using a defined set of transcription factors. Lineage reprogramming is very often defined as a process of converting one cell type into another without going through a pluripotent state, providing great promise for regenerative medicine. However, the identification of key transcription factors for lineage reprogramming is limited, due to the exhaustive and expensive experimental processes. Accumulating knowledge of genetic and epigenetic regulatory networks that are critical for defining a specific lineage provides unprecedented opportunities to model and predict pioneering factors that may drive directional lineage reprogramming to obtain the desired cell type.

Keywords: Reprogramming, Pluripotency, Differentiation, Lineage specification, Epigenetic regulatory network, Regeneration


Garreta, Elena, Marco, Andres, Izpisua Belmonte, Juan Carlos, Montserrat, Nuria, (2016). Genome editing in human pluripotent stem cells: a systematic approach unrevealing pancreas development and disease Stem Cell Investigation , 4, (11), 1-4

Although mouse models have represented a major tool for understanding and predicting molecular mechanisms responsible for several human genetic diseases, still species-specific differences between mouse and humans in their biochemical and physiological characteristics represent a major hurdle when translating promising findings into the human setting (1). For instance, in several types of maturity onset diabetes of the young (MODY; autosomal dominant), mice with heterozygous mutations do not develop diabetes (2). In this regard, the derivation of human embryonic stem cells (hESCs) in 1998 represented an unprecedented opportunity for human disease modelling, and a promising source for cell replacement therapies (3). Later on, the possibility to generate patient-derived induced pluripotent stem cells (iPSCs) has opened new venues for the potential translation of stem-cell related studies into the clinic (4).


Garreta, E., de Oñate, L., Fernández-Santos, M. E., Oria, R., Tarantino, C., Climent, A. M., Marco, A., Samitier, M., Martínez, Elena, Valls-Margarit, M., Matesanz, R., Taylor, D. A., Fernández-Avilés, F., Izpisua Belmonte, J. C., Montserrat, N., (2016). Myocardial commitment from human pluripotent stem cells: Rapid production of human heart grafts Biomaterials 98, 64-78

Genome editing on human pluripotent stem cells (hPSCs) together with the development of protocols for organ decellularization opens the door to the generation of autologous bioartificial hearts. Here we sought to generate for the first time a fluorescent reporter human embryonic stem cell (hESC) line by means of Transcription activator-like effector nucleases (TALENs) to efficiently produce cardiomyocyte-like cells (CLCs) from hPSCs and repopulate decellularized human heart ventricles for heart engineering. In our hands, targeting myosin heavy chain locus (MYH6) with mCherry fluorescent reporter by TALEN technology in hESCs did not alter major pluripotent-related features, and allowed for the definition of a robust protocol for CLCs production also from human induced pluripotent stem cells (hiPSCs) in 14 days. hPSCs-derived CLCs (hPSCs-CLCs) were next used to recellularize acellular cardiac scaffolds. Electrophysiological responses encountered when hPSCs-CLCs were cultured on ventricular decellularized extracellular matrix (vdECM) correlated with significant increases in the levels of expression of different ion channels determinant for calcium homeostasis and heart contractile function. Overall, the approach described here allows for the rapid generation of human cardiac grafts from hPSCs, in a total of 24 days, providing a suitable platform for cardiac engineering and disease modeling in the human setting.

Keywords: Cardiac function, Extracellular matrix, Gene targeting, Pluripotent stem cells


Eguizabal, C., Herrera, L., De Oñate, L., Montserrat, N., Hajkova, P., Izpisua Belmonte, J. C., (2016). Characterization of the epigenetic changes during human gonadal primordial germ cells reprogramming Stem Cells , 34, (9), 2418-2428

Abstract: Epigenetic reprogramming is a central process during mammalian germline development. Genome-wide DNA demethylation in primordial germ cells (PGCs) is a prerequisite for the erasure of epigenetic memory, preventing the transmission of epimutations to the next generation. Apart from DNA demethylation, germline reprogramming has been shown to entail reprogramming of histone marks and chromatin remodelling. Contrary to other animal models, there is limited information about the epigenetic dynamics during early germ cell development in humans. Here, we provide further characterization of the epigenetic configuration of the early human gonadal PGCs. We show that early gonadal human PGCs are DNA hypomethylated and their chromatin is characterized by low H3K9me2 and high H3K27me3 marks. Similarly to previous observations in mice, human gonadal PGCs undergo dynamic chromatin changes concomitant with the erasure of genomic imprints. Interestingly, and contrary to mouse early germ cells, expression of BLIMP1/PRDM1 persists in through all gestational stages in human gonadal PGCs and is associated with nuclear lysine-specific demethylase-1. Our work provides important additional information regarding the chromatin changes associated with human PGCs development between 6 and 13 weeks of gestation in male and female gonads.

Keywords: Epigenetic, Human primordial germ cells, Reprograming


Castaño, J., Herrero, A. B., Bursen, A., González, F., Marschalek, R., Gutiérrez, N. C., Menendez, P., (2016). Expression of MLL-AF4 or AF4-MLL fusions does not impact the efficiency of DNA damage repair Oncotarget 7, (21), 30440-30452

The most frequent rearrangement of the human MLL gene fuses MLL to AF4 resulting in high-risk infant B-cell acute lymphoblastic leukemia (B-ALL). MLL fusions are also hallmark oncogenic events in secondary acute myeloid leukemia. They are a direct consequence of mis-repaired DNA double strand breaks (DNA-DSBs) due to defects in the DNA damage response associated with exposure to topoisomerase-II poisons such as etoposide. It has been suggested that MLL fusions render cells susceptible to additional chromosomal damage upon exposure to etoposide. Conversely, the genome-wide mutational landscape in MLL-rearranged infant B-ALL has been reported silent. Thus, whether MLL fusions compromise the recognition and/or repair of DNA damage remains unanswered. Here, the fusion proteins MLL-AF4 (MA4) and AF4-MLL (A4M) were CRISPR/Cas9-genome edited in the AAVS1 locus of HEK293 cells as a model to study MLL fusion-mediated DNA-DSB formation/repair. Repair kinetics of etoposide- and ionizing radiation-induced DSBs was identical in WT, MA4- and A4M-expressing cells, as revealed by flow cytometry, by immunoblot for γH2AX and by comet assay. Accordingly, no differences were observed between WT, MA4- and A4M-expressing cells in the presence of master proteins involved in non-homologous end-joining (NHEJ; i.e.KU86, KU70), alternative-NHEJ (Alt-NHEJ; i.e.LigIIIa, WRN and PARP1), and homologous recombination (HR, i.e.RAD51). Moreover, functional assays revealed identical NHEJ and HR efficiency irrespective of the genotype. Treatment with etoposide consistently induced cell cycle arrest in S/G2/M independent of MA4/A4M expression, revealing a proper activation of the DNA damage checkpoints. Collectively, expression of MA4 or A4M does neither influence DNA signaling nor DNA-DSB repair.

Keywords: AF4.MLL, DSB, Infant leukemia, MLL.AF4, T(4, 11)


Montserrat, N., Garreta, E., Izpisua Belmonte, J. C., (2016). Regenerative strategies for kidney engineering FEBS Journal , 283, (18), 3303-3324

The kidney is the most important organ for water homeostasis and waste excretion. It performs several important physiological functions for homeostasis: it filters the metabolic waste out of circulation, regulates body fluid balances, and acts as an immune regulator and modulator of cardiovascular physiology. The development of in vitro renal disease models with pluripotent stem cells (both human embryonic stem cells and induced pluripotent stem cells) and the generation of robust protocols for in vitro derivation of renal-specific-like cells from patient induced pluripotent stem cells have just emerged. Here we review major findings in the field of kidney regeneration with a major focus on the development of stepwise protocols for kidney cell production from human pluripotent stem cells and the latest advances in kidney bioengineering (i.e. decellularized kidney scaffolds and bioprinting). The possibility of generating renal-like three-dimensional structures to be recellularized with renal-derived induced pluripotent stem cells may offer new avenues to develop functional kidney grafts on-demand.

Keywords: Induced pluripotent stem cells, Kidney disease, Kidney engineering, Pluripotent stem cells, Renal differentiation


González, F., (2016). CRISPR/Cas9 genome editing in human pluripotent stem cells: Harnessing human genetics in a dish Developmental Dynamics , 245, (7), 788-806

Abstract: Because of their extraordinary differentiation potential, human pluripotent stem cells (hPSCs) can differentiate into virtually any cell type of the human body, providing a powerful platform not only for generating relevant cell types useful for cell replacement therapies, but also for modeling human development and disease. Expanding this potential, structures resembling human organs, termed organoids, have been recently obtained from hPSCs through tissue engineering. Organoids exhibit multiple cell types self-organizing into structures recapitulating in part the physiology and the cellular interactions observed in the organ in vivo, offering unprecedented opportunities for human disease modeling. To fulfill this promise, tissue engineering in hPSCs needs to be supported by robust and scalable genome editing technologies. With the advent of the CRISPR/Cas9 technology, manipulating the genome of hPSCs has now become an easy task, allowing modifying their genome with superior precision, speed, and throughput. Here we review current and potential applications of the CRISPR/Cas9 technology in hPSCs and how they contribute to establish hPSCs as a model of choice for studying human genetics.

Keywords: CRISPR/Cas9, Disease modeling, Human genetics, Human pluripotent stem cells, Tissue and genome engineering


Reddy, Pradeep, Ocampo, Alejandro, Suzuki, Keiichiro, Luo, Jinping, Bacman, Sandra , Williams, Sion, Sugawara, Atsushi, Okamura, Daiji, Tsunekawa, Yuji, Wu, Jun, Lam, David, Xiong, Xiong, Montserrat, Nuria, Esteban, Concepcion, Liu, Guang-Hui, Sancho-Martinez, Ignacio, Manau, Dolors, Civico, Salva, Cardellach, Francesc, del Mar O'Callaghan, Maria, Campistol, Jaime, Zhao, Huimin, Campistol, Josep, Moraes, Carlos, Izpisua Belmonte, Juan Carlos, (2015). Selective elimination of mitochondrial mutations in the germline by genome editing Cell 161, (3), 459-469

Mitochondrial diseases include a group of maternally inherited genetic disorders caused by mutations in mtDNA. In most of these patients, mutated mtDNA coexists with wild-type mtDNA, a situation known as mtDNA heteroplasmy. Here, we report on a strategy toward preventing germline transmission of mitochondrial diseases by inducing mtDNA heteroplasmy shift through the selective elimination of mutated mtDNA. As a proof of concept, we took advantage of NZB/BALB heteroplasmic mice, which contain two mtDNA haplotypes, BALB and NZB, and selectively prevented their germline transmission using either mitochondria-targeted restriction endonucleases or TALENs. In addition, we successfully reduced human mutated mtDNA levels responsible for Leber?s hereditary optic neuropathy (LHOND), and neurogenic muscle weakness, ataxia, and retinitis pigmentosa (NARP), in mammalian oocytes using mitochondria-targeted TALEN (mito-TALENs). Our approaches represent a potential therapeutic avenue for preventing the transgenerational transmission of human mitochondrial diseases caused by mutations in mtDNA. Mitochondrial diseases include a group of maternally inherited genetic disorders caused by mutations in mtDNA. In most of these patients, mutated mtDNA coexists with wild-type mtDNA, a situation known as mtDNA heteroplasmy. Here, we report on a strategy toward preventing germline transmission of mitochondrial diseases by inducing mtDNA heteroplasmy shift through the selective elimination of mutated mtDNA. As a proof of concept, we took advantage of NZB/BALB heteroplasmic mice, which contain two mtDNA haplotypes, BALB and NZB, and selectively prevented their germline transmission using either mitochondria-targeted restriction endonucleases or TALENs. In addition, we successfully reduced human mutated mtDNA levels responsible for Leber?s hereditary optic neuropathy (LHOND), and neurogenic muscle weakness, ataxia, and retinitis pigmentosa (NARP), in mammalian oocytes using mitochondria-targeted TALEN (mito-TALENs). Our approaches represent a potential therapeutic avenue for preventing the transgenerational transmission of human mitochondrial diseases caused by mutations in mtDNA.


de Oñate, L., Garreta, E., Tarantino, C., Martínez, Elena, Capilla, E., Navarro, I., Gutiérrez, J., Samitier, J., Campistol, J.M., Muñoz-Cánovas, P., Montserrat, N., (2015). Research on skeletal muscle diseases using pluripotent stem cells Muscle Cell and Tissue (ed. Sakuma, K.), InTech (Rijeka, Croatia) , 333-357

The generation of induced pluripotent stem cells (iPSCs), especially the generation of patient-derived pluripotent stem cells (PSCs) suitable for disease modelling in vitro, opens the door for the potential translation of stem-cell related studies into the clinic. Successful replacement, or augmentation, of the function of damaged cells by patient-derived differentiated stem cells would provide a novel cell-based therapy for skeletal muscle-related diseases. Since iPSCs resemble human embryonic stem cells (hESCs) in their ability to generate cells of the three germ layers, patient-specific iPSCs offer definitive solutions for the ethical and histo-incompatibility issues related to hESCs. Indeed human iPSC (hiPSC)-based autologous transplantation is heralded as the future of regenerative medicine. Interestingly, during the last years intense research has been published on disease-specific hiPSCs derivation and differentiation into relevant tissues/organs providing a unique scenario for modelling disease progression, to screen patient-specific drugs and enabling immunosupression-free cell replacement therapies. Here, we revise the most relevant findings in skeletal muscle differentiation using mouse and human PSCs. Finally and in an effort to bring iPSC technology to the daily routine of the laboratory, we provide two different protocols for the generation of patient-derived iPSCs.

Keywords: Pluripotent stem cells, Myogenic differentiation, Disease modelling, Patient-specific induced pluripotent stem cells, Muscular dystrophy



Equipment

  • Real Time QuantStudio 5
  • SimpliAmp thermocycler
  • Eppendorf 5415D centrifuge
  • Allegra X-15 R centrifuge
  • Gyrozen 1248 centrifuge
  • BioUltra 6 Telstar culture Hood 2x
  • AH-100 Telstar primary culture Hood
  • Binder CB 60 incubators 2x
  • Controltecnica ASTEC SCA 165 incubator
  • Controltecnica ZC 180 incubator
  • Bioruptor Pico sonicator
  • Thermomixer C thermal block
  • Leica DMS1000 and DMIL Led microscopes
  • Leica DMi1 microscope
  • Leica MZ 10F magnifying glass
  • Safe Imager 2.0 transilluminator

Collaborations

  • Juan Carlos Izpisua Belmonte
    Salk Institute for Biological Studies
  • Dr. Josep Maria Campistol Plana
    Experimental Laboratory of Nephrology and Transplantation, Hospital Clínic, Barcelona
  • Peter Hohestein
    The Roslin Institute, University of Edinburgh
  • Dr. Pere Gascón Vilaplana
    Head of Oncology Service/Molecular and Translational Oncology Laboratory, IDIBAPS
  • Gloria Calderon
    Embryotools SL
  • Pura Muñoz Cánovas
    Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra
  • Dr. Pedro Guillén
    Director Clínica Cemtro, Madrid
  • Dr. Francisco Fernández Avilés
    Head of Cardiology Service, Hospital General Universitario Gregorio Marañón, Madrid
  • Dr María Eugenia Fernández
    Unit of Cell Production, Hospital Gregorio Marañón, Madrid
  • Joaquin Gutiérrez Fruitós
    University of Barcelona
  • Dr. Elena Martínez
    Biomimetic systems for cell engineering, IBEC
  • Dr. Cristina Eguizabal  Argaiz
    Centro Vasco de Transfusion y Tejidos Humanos (CVTTH), Bizkaia