DONATE

Staff member

Staff member publications

Perucca, Alice, Llonin, Andrea Gomez, Benach, Oriol Mane, Hallopeau, Clement, Rivas, Elisa I, Linares, Jenniffer, Garrido, Marta, Sallent-Aragay, Anna, Golde, Tom, Colombelli, Julien, Dalaka, Eleni, Linacero, Judith, Cazorla, Marina, Galan, Teresa, Pastor Viel, Jordi, Badenas, Xavier, Recort-Bascuas, Alba, Comerma, Laura, Fernandez-Nogueira, Patricia, Rovira, Ana, Roca-Cusachs, Pere, Albanell, Joan, Trepat, Xavier, Calon, Alexandre, Labernadie, Anna, (2025). Micro Immune Response On-chip (MIRO) models the tumour-stroma interface for immunotherapy testing Nature Communications 16, 1279

Immunotherapies are beneficial for a considerable proportion of cancer patients, but ineffective in others. In vitro modelling of the complex interactions between cancer cells and their microenvironment could provide a path to understanding immune therapy sensitivity and resistance. Here we develop MIRO, a fully humanised in vitro platform to model the spatial organisation of the tumour/stroma interface and its interaction with immune cells. We find that stromal barriers are associated with immune exclusion and protect cancer cells from antibody-dependent cellular cytotoxicity, elicited by targeted therapy. We demonstrate that IL2-driven immunomodulation increases immune cell velocity and spreading to overcome stromal immunosuppression and restores anti-cancer response in refractory tumours. Collectively, our study underscores the translational value of MIRO as a powerful tool for exploring how the spatial organisation of the tumour microenvironment shapes the immune landscape and influences the responses to immunomodulating therapies.

JTD Keywords: Activation, Animals, Architecture, Breast-cancer, Cancer-associated fibroblasts, Cell line, tumor, Collagen, Female, Humans, Immunomodulation, Immunotherapy, Interleukin-2, Lab-on-a-chip devices, Mechanism, Mice, Microenvironment, Migration, Neoplasms, Stromal cells, T-cells, Therap, Tumor microenvironment


Golde, T., Glaser, M., Tutmarc, C., Elbalasy, I., Huster, C., Busteros, G., Smith, D. M., Herrmann, H., Käs, J. A., Schnauß, J., (2019). The role of stickiness in the rheology of semiflexible polymers Soft Matter 15, (24), 4865-4872

Semiflexible polymers form central structures in biological material. Modelling approaches usually neglect influences of polymer-specific molecular features aiming to describe semiflexible polymers universally. Here, we investigate the influence of molecular details on networks assembled from filamentous actin, intermediate filaments, and synthetic DNA nanotubes. In contrast to prevalent theoretical assumptions, we find that bulk properties are affected by various inter-filament interactions. We present evidence that these interactions can be merged into a single parameter in the frame of the glassy wormlike chain model. The interpretation of this parameter as a polymer specific stickiness is consistent with observations from macro-rheological measurements and reptation behaviour. Our findings demonstrate that stickiness should generally not be ignored in semiflexible polymer models.

JTD