DONATE

Publications

by Keyword: Epithelial cells

Blauth, Eliane, Grosser, Steffen, Sauer, Frank, Merkel, Mario, Kubitschke, Hans, Warmt, Enrico, Morawetz, Erik W, Friedrich, Philip, Wolf, Benjamin, Briest, Susanne, Hiller, Grit Gesine Ruth, Horn, Lars-Christian, Aktas, Bahriye, Kaes, Josef A, (2024). Different contractility modes control cell escape from multicellular spheroids and tumor explants Apl Bioengineering 8, 026110

Cells can adapt their active contractile properties to switch between dynamical migratory states and static homeostasis. Collective tissue surface tension, generated among others by the cortical contractility of single cells, can keep cell clusters compact, while a more bipolar, anisotropic contractility is predominantly used by mesenchymal cells to pull themselves into the extracellular matrix (ECM). Here, we investigate how these two contractility modes relate to cancer cell escape into the ECM. We compare multicellular spheroids from a panel of breast cancer cell lines with primary tumor explants from breast and cervical cancer patients by measuring matrix contraction and cellular spreading into ECM mimicking collagen matrices. Our results in spheroids suggest that tumor aggressiveness is associated with elevated contractile traction and reduced active tissue surface tension, allowing cancer cell escape. We show that it is not a binary switch but rather the interplay between these two contractility modes that is essential during this process. We provide further evidence in patient-derived tumor explants that these two contractility modes impact cancer cells' ability to leave cell clusters within a primary tumor. Our results indicate that cellular contractility is an essential factor during the formation of metastases and thus may be suitable as a prognostic criterion for the assessment of tumor aggressiveness.

JTD Keywords: Breast-cancer, Disease, Emt, Forces, Hypothesis, Intercellular-adhesion, Myoepithelial cell, Stiffness, Wetting transition


Marín-Llauradó, A, Kale, S, Ouzeri, A, Golde, T, Sunyer, R, Torres-Sánchez, A, Latorre, E, Gómez-González, M, Roca-Cusachs, P, Arroyo, M, Trepat, X, (2023). Mapping mechanical stress in curved epithelia of designed size and shape Nature Communications 14, 4014

The function of organs such as lungs, kidneys and mammary glands relies on the three-dimensional geometry of their epithelium. To adopt shapes such as spheres, tubes and ellipsoids, epithelia generate mechanical stresses that are generally unknown. Here we engineer curved epithelial monolayers of controlled size and shape and map their state of stress. We design pressurized epithelia with circular, rectangular and ellipsoidal footprints. We develop a computational method, called curved monolayer stress microscopy, to map the stress tensor in these epithelia. This method establishes a correspondence between epithelial shape and mechanical stress without assumptions of material properties. In epithelia with spherical geometry we show that stress weakly increases with areal strain in a size-independent manner. In epithelia with rectangular and ellipsoidal cross-section we find pronounced stress anisotropies that impact cell alignment. Our approach enables a systematic study of how geometry and stress influence epithelial fate and function in three-dimensions.© 2023. The Author(s).

JTD Keywords: cell, forces, morphogenesis, tension, E-cadherin, Epithelial cells, Epithelium, Microscopy, Stress, mechanical


Ulldemolins, A, Jurado, A, Herranz-Diez, C, Gavara, N, Otero, J, Farré, R, Almendros, I, (2022). Lung Extracellular Matrix Hydrogels-Derived Vesicles Contribute to Epithelial Lung Repair Polymers 14, 4907

The use of physiomimetic decellularized extracellular matrix-derived hydrogels is attracting interest since they can modulate the therapeutic capacity of numerous cell types, including mesenchymal stromal cells (MSCs). Remarkably, extracellular vesicles (EVs) derived from MSCs display similar functions as their parental cells, mitigating tissue damage in lung diseases. However, recent data have shown that ECM-derived hydrogels could release other resident vesicles similar to EVs. Here, we aim to better understand the contribution of EVs and ECM-vesicles released from MSCs and/or lung-derived hydrogel (L-HG) in lung repair by using an in vitro lung injury model. L-HG derived-vesicles and MSCs EVs cultured either in L-HG or conventional plates were isolated and characterized. The therapeutic capacity of vesicles obtained from each experimental condition was tested by using an alveolar epithelial wound-healing assay. The number of ECM-vesicles released from acellular L-HG was 10-fold greater than EVs from conventional MSCs cell culture revealing that L-HG is an important source of bioactive vesicles. MSCs-derived EVs and L-HG vesicles have similar therapeutic capacity in lung repair. However, when wound closure rate was normalized by total proteins, the MSCs-derived EVs shows higher therapeutic potential to those released by L-HG. The EVs released from L-HG must be considered when HG is used as substrate for cell culture and EVs isolation.

JTD Keywords: cell, extracellular vesicles, hydrogel, lung epithelial cells, lung repair, mesenchymal stem cells, Extracellular matrix, Extracellular vesicles, Hydrogel, Lung epithelial cells, Lung repair, Mesenchymal stem cells, Respiratory-distress-syndrome


Zambarda, C, Gonzalez, CP, Schoenit, A, Veits, N, Schimmer, C, Jung, RM, Ollech, D, Christian, J, Roca-Cusachs, P, Trepat, X, Cavalcanti-Adam, EA, (2022). Epithelial cell cluster size affects force distribution in response to EGF-induced collective contractility European Journal Of Cell Biology 101, 151274

Several factors present in the extracellular environment regulate epithelial cell adhesion and dynamics. Among them, growth factors such as EGF, upon binding to their receptors at the cell surface, get internalized and directly activate the acto-myosin machinery. In this study we present the effects of EGF on the contractility of epithelial cancer cell colonies in confined geometry of different sizes. We show that the extent to which EGF triggers contractility scales with the cluster size and thus the number of cells. Moreover, the collective contractility results in a radial distribution of traction forces, which are dependent on integrin β1 peripheral adhesions and transmitted to neighboring cells through adherens junctions. Taken together, EGF-induced contractility acts on the mechanical crosstalk and linkage between the cell-cell and cell-matrix compartments, regulating collective responses.Copyright © 2022 The Authors. Published by Elsevier GmbH.. All rights reserved.

JTD Keywords: actin, activation, actomyosin, adherens junctions, adhesion, e-cadherin, egf, maturation, mechanical regulation, micropatterning, migration, traction forces, transduction, transmission, Actomyosin, Adherens junctions, Cell adhesion, Cell membrane, Collective contractility, Egf, Epidermal growth factor, Epidermal-growth-factor, Epithelial cells, Micropatterning, Myosins, Traction forces


Donker, L, Houtekamer, R, Vliem, M, Sipieter, F, Canever, H, Gómez-González, M, Bosch-Padrós, M, Pannekoek, WJ, Trepat, X, Borghi, N, Gloerich, M, (2022). A mechanical G2 checkpoint controls epithelial cell division through E-cadherin-mediated regulation of Wee1-Cdk1 Cell Reports 41, 111475

Epithelial cell divisions are coordinated with cell loss to preserve epithelial integrity. However, how epithelia adapt their rate of cell division to changes in cell number, for instance during homeostatic turnover or wounding, is not well understood. Here, we show that epithelial cells sense local cell density through mechanosensitive E-cadherin adhesions to control G2/M cell-cycle progression. As local cell density increases, tensile forces on E-cadherin adhesions are reduced, which prompts the accumulation of the G2 checkpoint kinase Wee1 and downstream inhibitory phosphorylation of Cdk1. Consequently, dense epithelia contain a pool of cells that are temporarily halted in G2 phase. These cells are readily triggered to divide following epithelial wounding due to the consequent increase in intercellular forces and resulting degradation of Wee1. Our data collectively show that epithelial cell division is controlled by a mechanical G2 checkpoint, which is regulated by cell-density-dependent intercellular forces sensed and transduced by E-cadherin adhesions.Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved.

JTD Keywords: Adherens junction, Cadherins, Cell cycle, Cell cycle proteins, Cell division, Cp: cell biology, E-cadherin, Epithelial cells, Epithelial homeostasis, G2 checkpoint, G2 phase cell cycle checkpoints, Mechanical forces, Mechanotransduction, Mitosis, Phosphorylation, Proliferation


Marhuenda, E, Villarino, A, Narciso, M, Elowsson, L, Almendros, I, Westergren-Thorsson, G, Farre, R, Gavara, N, Otero, J, (2022). Development of a physiomimetic model of acute respiratory distress syndrome by using ECM hydrogels and organ-on-a-chip devices Frontiers In Pharmacology 13, 945134

Acute Respiratory Distress Syndrome is one of the more common fatal complications in COVID-19, characterized by a highly aberrant inflammatory response. Pre-clinical models to study the effect of cell therapy and anti-inflammatory treatments have not comprehensively reproduced the disease due to its high complexity. This work presents a novel physiomimetic in vitro model for Acute Respiratory Distress Syndrome using lung extracellular matrix-derived hydrogels and organ-on-a-chip devices. Monolayres of primary alveolar epithelial cells were cultured on top of decellullarized lung hydrogels containing primary lung mesenchymal stromal cells. Then, cyclic stretch was applied to mimic breathing, and an inflammatory response was induced by using a bacteriotoxin hit. Having simulated the inflamed breathing lung environment, we assessed the effect of an anti-inflammatory drug (i.e., dexamethasone) by studying the secretion of the most relevant inflammatory cytokines. To better identify key players in our model, the impact of the individual factors (cyclic stretch, decellularized lung hydrogel scaffold, and the presence of mesenchymal stromal cells) was studied separately. Results showed that developed model presented a more reduced inflammatory response than traditional models, which is in line with what is expected from the response commonly observed in patients. Further, from the individual analysis of the different stimuli, it was observed that the use of extracellular matrix hydrogels obtained from decellularized lungs had the most significant impact on the change of the inflammatory response. The developed model then opens the door for further in vitro studies with a better-adjusted response to the inflammatory hit and more robust results in the test of different drugs or cell therapy.

JTD Keywords: alveolar epithelial cells, ards, extracellular matrix, hydrogels, inflammation, lung-on-a-chip, Acute lung injury, Alveolar epithelial cells, Ards, Dexamethasone, Epithelial-mesenchymal transition, Extracellular matrix, Extracellular-matrix, Hydrogels, Inflammation, Lung-on-a-chip, Mesenchymal stromal cells, Oxygen, Stem-cells


Del Mar Cendra, Maria, Torrents, Eduard, (2020). Differential adaptability between reference strains and clinical isolates of Pseudomonas aeruginosa into the lung epithelium intracellular lifestyle Virulence 11, (1), 862-876

Intracellular invasion is an advantageous mechanism used by pathogens to evade host defense and antimicrobial therapy. In patients, the intracellular microbial lifestyle can lead to infection persistence and recurrence, thus worsening outcomes. Lung infections caused by Pseudomonas aeruginosa, especially in cystic fibrosis (CF) patients, are often aggravated by intracellular invasion and persistence of the pathogen. Proliferation of the infectious species relies on a continuous deoxyribonucleotide (dNTP) supply, for which the ribonucleotide reductase enzyme (RNR) is the unique provider. The large genome plasticity of P. aeruginosa and its ability to rapidly adapt to different environments are challenges for studying the pathophysiology associated with this type of infection. Using different reference strains and clinical isolates of P. aeruginosa independently combined with alveolar (A549) and bronchial (16HBE14o- and CF-CFBE41o-) epithelial cells, we analyzed host–pathogen interactions and intracellular bacterial persistence with the aim of determining a cell type-directed infection promoted by the P. aeruginosa strains. The oscillations in cellular toxicity and oxygen consumption promoted by the intracellular persistence of the strains were also analyzed among the different infectious lung models. Significantly, we identified class II RNR as the enzyme that supplies dNTPs to intracellular P. aeruginosa. This discovery could contribute to the development of RNR-targeted strategies against the chronicity occurring in this type of lung infection. Overall our study demonstrates that the choice of bacterial strain is critical to properly study the type of infectious process with relevant translational outcomes.

JTD Keywords: Pseudomonas aeruginosa, Intracellular persistence, Lung, Epithelial cells, Clinical isolates, Host-pathogen interactions, Intracellular lifestyle, Chronic infections, Cystic fibrosis, Ribonucleotide reductase


Gavara, N., Roca-Cusachs, P., Sunyer, R., Farre, R., Navajas, D., (2008). Mapping cell-matrix stresses during stretch reveals inelastic reorganization of the cytoskeleton Biophysical Journal , 95, (1), 464-471

The mechanical properties of the living cell are intimately related to cell signaling biology through cytoskeletal tension. The tension borne by the cytoskeleton (CSK) is in part generated internally by the actomyosin machinery and externally by stretch. Here we studied how cytoskeletal tension is modified during stretch and the tensional changes undergone by the sites of cell-matrix interaction. To this end we developed a novel technique to map cell-matrix stresses during application of stretch. We found that cell-matrix stresses increased with imposition of stretch but dropped below baseline levels on stretch release. Inhibition of the actomyosin machinery resulted in a larger relative increase in CSK tension with stretch and in a smaller drop in tension after stretch release. Cell-matrix stress maps showed that the loci of cell adhesion initially bearing greater stress also exhibited larger drops in traction forces after stretch removal. Our results suggest that stretch partially disrupts the actin-myosin apparatus and the cytoskeletal structures that support the largest CSK tension. These findings indicate that cells use the mechanical energy injected by stretch to rapidly reorganize their structure and redistribute tension.

JTD Keywords: Cell Line, Computer Simulation, Cytoskeleton/ physiology, Elasticity, Epithelial Cells/ physiology, Extracellular Matrix/ physiology, Humans, Mechanotransduction, Cellular/ physiology, Models, Biological, Stress, Mechanical