Staff member

Isabela Corina Santos Fortunato

Staff member publications

Pallares, ME, Pi-Jauma, I, Fortunato, IC, Grazu, V, Gomez-Gonzalez, M, Roca-Cusachs, P, de la Fuente, JM, Alert, R, Sunyer, R, Casademunt, J, Trepat, X, (2023). Stiffness-dependent active wetting enables optimal collective cell durotaxis Nature Physics 19, 279-289

The directed migration of cellular clusters enables morphogenesis, wound healing and collective cancer invasion. Gradients of substrate stiffness direct the migration of cellular clusters in a process called collective durotaxis, but the underlying mechanisms remain unclear. Here we unveil a connection between collective durotaxis and the wetting properties of cellular clusters. We show that clusters of cancer cells dewet soft substrates and wet stiff ones. At intermediate stiffness-at the crossover from low to high wettability-clusters on uniform-stiffness substrates become maximally motile, and clusters on stiffness gradients exhibit optimal durotaxis. Durotactic velocity increases with cluster size, stiffness gradient and actomyosin activity. We demonstrate this behaviour on substrates coated with the cell-cell adhesion protein E-cadherin and then establish its generality on substrates coated with extracellular matrix. We develop an active wetting model that explains collective durotaxis in terms of a balance between in-plane active traction and tissue contractility and out-of-plane surface tension. Finally, we show that the distribution of cluster displacements has a heavy tail, with infrequent but large cellular hops that contribute to durotactic migration. Our study demonstrates a physical mechanism of collective durotaxis, through both cell-cell and cell-substrate adhesion ligands, based on the wetting properties of active droplets.

JTD Keywords: Adhesion, Dynamics, E-cadherin, Gradient, Migration, Model, Motility, Movements, Rigidity, Substrate stiffness

Fortunato, Isabela C., Sunyer, Raimon, (2022). The Forces behind Directed Cell Migration Biophysica 2, 548-563

Directed cell migration is an essential building block of life, present when an embryo develops, a dendritic cell migrates toward a lymphatic vessel, or a fibrotic organ fails to restore its normal parenchyma. Directed cell migration is often guided by spatial gradients in a physicochemical property of the cell microenvironment, such as a gradient in chemical factors dissolved in the medium or a gradient in the mechanical properties of the substrate. Single cells and tissues sense these gradients, establish a back-to-front polarity, and coordinate the migration machinery accordingly. Central to these steps we find physical forces. In some cases, these forces are integrated into the gradient sensing mechanism. Other times, they transmit information through cells and tissues to coordinate a collective response. At any time, they participate in the cellular migratory system. In this review, we explore the role of physical forces in gradient sensing, polarization, and coordinating movement from single cells to multicellular collectives. We use the framework proposed by the molecular clutch model and explore to what extent asymmetries in the different elements of the clutch can lead to directional migration.


Barbacena P, Dominguez-Cejudo M, Fonseca CG, Gómez-González M, Faure LM, Zarkada G, Pena A, Pezzarossa A, Ramalho D, Giarratano Y, Ouarné M, Barata D, Fortunato IC, Misikova LH, Mauldin I, Carvalho Y, Trepat X, Roca-Cusachs P, Eichmann A, Bernabeu MO, Franco CA, (2022). Competition for endothelial cell polarity drives vascular morphogenesis in the mouse retina Developmental Cell 57, 2321-2333

Blood-vessel formation generates unique vascular patterns in each individual. The principles governing the apparent stochasticity of this process remain to be elucidated. Using mathematical methods, we find that the transition between two fundamental vascular morphogenetic programs-sprouting angiogenesis and vascular remodeling-is established by a shift of collective front-to-rear polarity of endothelial cells in the mouse retina. We demonstrate that the competition between biochemical (VEGFA) and mechanical (blood-flow-induced shear stress) cues controls this collective polarity shift. Shear stress increases tension at focal adhesions overriding VEGFA-driven collective polarization, which relies on tension at adherens junctions. We propose that vascular morphogenetic cues compete to regulate individual cell polarity and migration through tension shifts that translates into tissue-level emergent behaviors, ultimately leading to uniquely organized vascular patterns.Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved.

JTD Keywords: activation, angiogenesis, dynamics, flow, forces, image, mechanisms, vinculin, Angiogenesis, Cell polarity, Fluid shear, Mechanobiology, Morphogenesis, Shear stress