DONATE

Nanomalaria

The Nanomalaria group is a joint unit affiliated with IBEC and the Barcelona Institute for Global Health (ISGlobal), located in the Esther Koplowitz Centre near Hospital Clínic (Barcelona).

About


The current activity of the Nanomalaria group is focused on the development of nanomedicine-based systems to be applied to malaria prophylaxis, diagnosis and therapy.

Methods for the diagnosis of malaria can benefit from nanotools applied to the design of microfluidic-based devices for the accurate identification of the parasite’s strain, its precise infective load, and the relative content of the different stages of its life cycle, whose knowledge is essential for the administration of adequate therapies.

Malaria is arguably one of the main medical concerns worldwide because of the numbers of people affected, the severity of the disease and the complexity of the life cycle of its causative agent, the protist Plasmodium spp. The clinical, social and economic burden of malaria has led for the last 100 years to several waves of serious efforts to reach its control and eventual eradication, without success to this day.

With the advent of nanoscience, renewed hopes have appeared of finally obtaining the long sought-after magic bullet against malaria in the form of a nanovector for the targeted delivery of antimalarial drugs exclusively to Plasmodium-infected cells. Nanotechnology can also be applied to the discovery of new antimalarials through single-molecule manipulation approaches for the identification of novel drugs targeting essential molecular components of the parasite.

The benefits and drawbacks of these nanosystems have to be considered in different possible scenarios, including economy-related issues that are hampering the progress of nanotechnology-based medicines against malaria with the dubious argument that they are too expensive to be used in developing areas. Unfortunately, it is true that the application of nanoscience to infectious disease has been traditionally neglected, with most research resources overwhelmingly biased towards other pathologies more prominent in the developed world. Thus, extra ingenuity is demanded from us: malaria-oriented nanomedicines not only need to work spotless; they have to do so in a cost-efficient way because they will be deployed in low-income regions.

The driving force of the Nanomalaria group is our personal commitment to applying nanomedicine to infectious diseases of poverty through several research lines:

  • Exploration of different types of encapsulating structure (liposomes, synthetic and natural polymers), targeting molecule (protein, polysaccharide, nucleic acid aptamers), and antimalarial compound (e.g. new structures derived from marine organisms and antimicrobial peptides) for the assembly of nanovectors capable of delivering their drug cargo with complete specificity to diseased cells.
  • Study of metabolic pathways present in Plasmodium but absent in humans, with the aim of identifying specific enzymes as therapeutic targets.
  • Use of glycosaminoglycans for innovative antimalarial strategies.
  • Design of new methods for the targeted drug delivery to Plasmodium stages in the mosquito vector.
  • Investigation of novel drugs against insect-borne diseases working through radically new mechanisms.
  • Extension of our activities to new pathologies (leishmaniasis).

FIGURE 1. Top: female Anopheles gambiae mosquito. From: John Smart, A Handbook for the Identification of Insects of Medical Importance, British Museum, London, 1948. Bottom: Logo of the NANOpheles project (EURONANOMED III call) coordinated by the Nanomalaria Group.
FIGURE 2. Cover image of the PhD Thesis of Dr. Elisabet Martí Coma-Cros, Investigation of branched and linear polymers as oral delivery systems of antimalarial drugs. 2019. Universitat de Barcelona. Cover design by Mar Martí Coma-Cros.

Staff

Xavier Fernàndez-Busquets
Group Leader
+34 93 227 5400 ext 4581
xfernandezibecbarcelona.eu

Projects

NATIONAL PROJECTSFINANCERPI
IPANAT Investigación de la agregación proteica como nueva diana antimalárica (2019-2021)MICIU, Retos investigación: Proyectos I+DXavier Fernández- Busquets
Coated liposome nanocomplexes as drug delivery systems for treatment of leishmaniasisFundació La Marató de TV3Xavier Fernández-Busquets
PRIVATELY-FUNDED PROJECTSFINANCERPI
Identificació de fraccions d’heparina com a noves teràpies antimalàriquesBioiberica, S.A.Xavier Fernández- Busquets
FINISHED PROJECTSFINANCERPI
NANOpheles Development of nanovectors for the targeted delivery in Anopheles mosquitoes of agents blocking transmission of Plasmodium parasites (2017-2021)EURONANOMED III: European innovative research & technological development projects in nanomedicineXavier Fernández- Busquets
PaMapDX · Pan-Malaria Aptamer-based Rapid Diagnostic Test (2020-2021)Obra Social La Caixa, CaixaimpulseElena Lantero
NANOMISSION Ingeniería de nanovectores para la liberación de fármacos antimaláricos a fases de transmisión de PlasmodiumMINECO, Retos investigación: Proyectos I+DXavier Fernández- Busquets
NANOMALNET Exploración de nuevas moléculas direccionadoras eficientes para la liberación de antimaláricosBiotechnology Programme, MINECO, Spain (BIO2011-25039)Xavier Fernández- Busquets
Amphoteric polyamidoamines as innovative tools to selectively direct antimalarial drugs towards Plasmodium-infected red blood cellsFundación CARIPLOXavier Fernández- Busquets

Publications

Equipment

  • Zeiss Primostar microscope
  • Shake ‘N’ Stack (Thermo Hybaid) hybridization oven
  • Rotatory evaporator RS 3000-V (Selecta)
  • Plasmodium falciparum cell cultures

Collaborations

  • Prof. Dario Anselmetti
    Universität Bielefeld, Germany. Single molecule force spectroscopy
  • Prof. Maria Antònia Busquets
    University of Barcelona, Spain
  • Prof. Elisabetta Ranucci
    Università degli Studi di Milano, Italy
  • Prof. José Manuel Bautista
    Universidad Complutense de Madrid, Spain
  • Dr. Matthias Rottmann
    Swiss Tropical and Public Health Institute, Basel, Switzerland
  • Prof. Robert Sinden
    Imperial College London, UK
  • Dr. Israel Molina
    Hospital Universitari Vall d’Hebron, Barcelona
  • Prof. José Luis Serrano
    Instituto de Nanociencia de Aragón, Zaragoza
  • Prof. Johan Engbersen
    University of Twente, The Netherlands
  • Dr. Santiago Imperial
    University of Barcelona, Spain
  • Dr. Eduardo Prata Vilanova
    Universidade Federal do Rio de Janeiro, Brazil. Exploration of sulfated polysaccharides of marine origin as antimalarials
  • Dr. Maria Manconi
    Università de Cagliari, Sardinia, Italy. Liposome technology
  • Dr. Krijn Paaijmans
    CRESIB, Barcelona, Spain
  • Dr. Ellen Faszewski
    Wheelock College, Boston, USA. Marine sponge cell adhesion
  • Prof. Bernard Degnan
    University of Brisbane, Australia
  • Dr. Francisco J. Muñoz
    Parc de Recerca Biomèdica de Barcelona, Spain. Amyloid diseases
  • Dr. Inga Siden-Kiamos
    FORTH Institute of Molecular Biology & Biotechnology, Greece. Development of the malaria parasite within the mosquito
  • Prof. Salvador Ventura
    Universitat Autònoma de Barcelona, Bellaterra, Spain. Aggregative proteins
  • Dr. Juan José Valle-Delgado
    Aalto University, Helsinki, Finland. Atomic force microscopy
  • Prof. Mats Wahlgren
    Karolinska Institutet, Stockholm, Sweden
  • Dr. Fatima Nogueira
    Instituto de Higiene e Medicina Tropical, Lisboa, Portugal. Antimalarial drug assays in Plasmodium-infected mosquitoes and mice. 
  • Dr. Christian Grandfils
    University of Liège, Belgium. Biomaterials research. 
  • Salvador Borros
    Institut Químic de Sarrià, Barcelona. Materials Chemistry 
  • Paula Gomes
    Universidade do Porto, Portugal. Development of new antimalarial drugs
  • José Antonio García Salcedo
    Instituto de Parasitología y Biomedicina “López-Neyra”, Consejo Superior de Investigaciones Científicas (CSIC), Granada, SpainSynthesis of chitosan nanoparticles
  • Eva Baldrich
    Hospital Universitari Vall d’Hebron, Barcelona. Malaria diagnosis
  • Kim Williamson
    Uniformed Services University of the Health Sciences, Bethesda, USA. Basic biology of bacterial, viral, and parasite diseases
  • Teresa Sierra
    Instituto de Nanociencia de Aragón, Zaragoza, SpainDendrimer technology 
  • Jos Paulusse
    University of Twente, The Netherlands. Encapsulation of peptides in tailor-made multifunctionalized nanocarriers and polyamidoamine-derived nanogels 

News

La malaria mata a más de 500.000 personas cada año. En los últimos tres años, los investigadores del Proyecto NANOpheles trabajaron en el desarrollo de nanovectores dirigidos a los parásitos Plasmodium dentro del mosquito vector. Xavier Fernàndez-Busquets, coordinador del proyecto financiado por la UE, explica sus avances en un nuevo vídeo.

Últimos avances de la nanomedicina europea contra la malaria explicados en un nuevo vídeo

La malaria mata a más de 500.000 personas cada año. En los últimos tres años, los investigadores del Proyecto NANOpheles trabajaron en el desarrollo de nanovectores dirigidos a los parásitos Plasmodium dentro del mosquito vector. Xavier Fernàndez-Busquets, coordinador del proyecto financiado por la UE, explica sus avances en un nuevo vídeo.

Según indica el estudio, la estrategia tiene además la ventaja de reconocer al gametocito, la fase transmisible del parásito. Encapsular dos fármacos con propiedades diferentes en nanovesículas rodeadas por anticuerpos mejora notablemente la especificidad y eficacia de los mismos, según un estudio liderado por Xavier Fernández-Busquets, director de la unidad mixta de Nanomalaria del Instituto de Bioingeniería de Cataluña (IBEC) y el Instituto de Salud Global de Barcelona (ISGlobal), centro impulsado por ”la Caixa”. La combinación de dos fármacos que difieren en su mecanismo de acción es la base de las terapias más exitosas hoy en día para tratar la malaria. Sin embargo, la diferencia en propiedades fisicoquímicas de los fármacos (solubilidad, vida media, etc.) afecta muchas veces a la eficacia del tratamiento.

Los nanovectores podrían mejorar la administración combinada de fármacos contra la malaria

Según indica el estudio, la estrategia tiene además la ventaja de reconocer al gametocito, la fase transmisible del parásito. Encapsular dos fármacos con propiedades diferentes en nanovesículas rodeadas por anticuerpos mejora notablemente la especificidad y eficacia de los mismos, según un estudio liderado por Xavier Fernández-Busquets, director de la unidad mixta de Nanomalaria del Instituto de Bioingeniería de Cataluña (IBEC) y el Instituto de Salud Global de Barcelona (ISGlobal), centro impulsado por ”la Caixa”. La combinación de dos fármacos que difieren en su mecanismo de acción es la base de las terapias más exitosas hoy en día para tratar la malaria. Sin embargo, la diferencia en propiedades fisicoquímicas de los fármacos (solubilidad, vida media, etc.) afecta muchas veces a la eficacia del tratamiento.

Jobs