About
Every time we blink, move a hand, draw a breath, or walk, cells in our body exert, transmit, withstand, and detect forces. This mechanical interaction with the environment determines how cells proliferate, differentiate, and move, and regulates development, tumorigenesis or wound healing.
Our research aims precisely at unraveling the mechanisms that these molecules use to detect and respond to mechanical stimuli like forces or tissue rigidity, triggering downstream cell responses.
Just like biochemical stimuli initiate signaling cascades, mechanical forces affect the links and conformation of a network of molecules connecting cells to the extracellular matrix.
To this end, we combine biophysical techniques like magnetic and optical tweezers, Atomic Force Microscopy, traction microscopy, and microfabricated force sensors with molecular biology, advanced optical microscopy, and theoretical modelling.
Sensing the environment: Using this multi-disciplinary approach, we have unveiled a molecular mechanism that cells employ to detect and respond to the rigidity of their environment, which could be crucial in breast tissue and breast cancer (Elosegui-Artola et al., 2016 Nat. Cell Biol., and Elosegui-Artola et al. 2014, Nature Mater.). This mechanism is mediated by what is known as a “molecular clutch”: in a surprising analogy with a car engine, cells can be understood as a molecular network that can engage and disengage from its environment, just as the clutch of a car. This affects force transmission from the environment to cells, and also within different cell components. We are also expanding on the idea of the molecular clutch, to explore how cell molecular engines sense not only mechanical rigidity, but other important parameters from their environment: for instance, the composition and distribution of ligands in the extracellular matrix, or other cells. In this regard, we uncovered that this concept can explain how cells sense the spatial distribution of ligands in the extracellular matrix (Oria et al., Nature 2017). We have also demonstrated that cell-cell force transmission, mediated by a molecular clutch, is essential for cells to sense gradients in stiffness (Sunyer et al., Science 2016, in collaboration with the group of Xavier Trepat).
Nuclear mechanotransduction: Forces applied to cells are transmitted all the way to the cell nucleus, where they affect its function. We are studying how this force transmission affects the dynamics of transcriptional regulators, such as YAP (Elosegui-Artola et al., 2017, Cell), and how this affects cell function.
The membrane as a mechanosensor: Due to its mechanical properties, the plasma membrane itself can respond to forces and act as a mechanosensor. Recently, we have shown that cell membranes can use purely physical principles to adapt their shape in response to mechanical forces (Kosmalska et al., 2015, Nat. Commun.). We are currently studying how cells harness this physical membrane behavior to respond to signals from their environment.
Ultimately, when we determine the molecular mechanisms that communicate cells with their environment, we will understand how forces determine development when things go right, and tumor formation when they go wrong.


Video: How tissue stiffness activates cancer
Staff
Projects
NATIONAL PROJECTS | FINANCER | PI |
---|---|---|
MECNUC · Estudio del control mecánico de la localización nuclear de proteínas (2020-2023) | MINECO Retos investigación: Proyectos I+D | Pere Roca-Cusachs |
BLOCMEC Development of small molecules to block mechanotransduction for pancreatic cancer therapy (2021-2023) | MICIU, Proyectos Pruebas de Concepto | Pere Roca-Cusachs |
INTROPY INhibiting mechanoTRansduction for Oncology theraPY (2021-2023) | ACCIO, Tecniospring Industry | Mamatha Nijaguna |
INTERNATIONAL PROJECTS | FINANCER | PI |
---|---|---|
MECHANOCONTROL · Mechanical control of biological function (2017-2021) | European Commission, FET Proactive | Pere Roca-Cusachs |
TALVIN · Inhibiting mechanotransduction for the treatment of pancreatic cancer (2018-2021) | European Commission, FET Innovation Launchpad | Pere Roca-Cusachs |
MECHANOSITY Mechanical regulation of cellular behaviour in 3D viscoelastic materials (2019-2022) | European Commission, MARIE CURIE | Alberto Elosegui |
PRIVATELY-FUNDED PROJECTS | FINANCER | PI |
---|---|---|
Mech4Cancer · Enabling technologies to map nuclear mechanosensing: from organoids to tumors (2020-2023) | Obra Social La Caixa Health Research Call | Pere Roca-Cusachs |
Understanding YAP-mediated mechanotransduction in pancreatic cancer (2020-2023) | Fundació La Marató de TV3 | Pere Roca-Cusachs |
Understanding and measuring mechanical tumor properties to improve cancer diagnosis, treatment, and survival: Application to liquid biòpsies (2017-2022) | Obra Social La Caixa | Pere Roca-Cusachs |
FINISHED PROJECTS | FINANCER | PI |
---|---|---|
Desarrollo de una terapia innovadora para el tratamiento de los tumores sólidos mediante la inhibición de la mecanotransducción (2018-2020) | MINECO, Subprograma Retos-Colaboración | Pere Roca-Cusachs |
Understanding and measuring mechanical tumor properties to improve cancer diagnosis, treatment, and survival: Application to liquid biopsies (2017-2020) | Obra Social La Caixa | Pere Roca-Cusachs |
IMREG El sistema acoplado entre integrinas y proteínas adaptadoras como regulador mecánico del comportamiento celular (2016-2020) | MINECO, Proyectos I+D Excelencia![]() | Pere Roca-Cusachs |
MECHANOMEMBRANE Redes mecanoquímicas en la membrana plasmática (2017-2018) | MINECO, Subprograma Estatal de Generación de Conocimiento “EUROPA EXCELENCIA” | Pere Roca-Cusachs |
Stromal stiffness in tumor progression (2014-2017) | Fundació La Marató de TV3 | Pere Roca-Cusachs |
MECBIO Red de Excelencia en Mecanobiología (2014-2016) | MINECO, Subprograma Estatal de Generación de Conocimiento «REDES DE EXCELENCIA» | Pere Roca-Cusachs |
Inhibiting mechanostransduction as a novel therapy in the treatment of solid tumors (2017-2018) | Obra Social La Caixa | Pere Roca-Cusachs |
Publications
Click here for a list of publications by Pere Roca-Cusachs with IBEC affiliation.
Click here for a full list of publications including those affiliated to other organisations.
Equipment
- Confocal Microcopy
- Traction Microscopy
- Live cell fluorescence microscopy
- Cell stretching
- Cell culture
- Magnetic Tweezers
- Atomic Force Microscopy
- Surface Micro/Nano-patterning
- Optical tweezers
Collaborations
- Dr. Nils Gauthier
Mechanobiology Institute, Singapore - Prof. Miguel Ángel del Pozo
Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid - Prof. Marino Arroyo
UPC, Barcelona - Prof. Ada Cavalcanti
University of Heidelberg, Germany - Satyajit Mayor
National Centre for Biological Sciences, Bangalore, India - Sergi Garcia-Manyes
King’s College, London, UK - Cheng Zhu
Georgia Tech, Atlanta, USA - Louise Jones
Barts Cancer Institute, London, UK - Aránzazu del Campo
INM Saarbrücken, Germany - Johan de Rooij and Patrick Derksen
UMC Utrecht, the Netherlands - Johanna Ivaska
University of Turku, Finland - Jacco van Rheenen
Netherlands Cancer Institute, Netherlands - Isaac Almendros and Ramon Farré
UB, Barcelona - Marc Martí-Renom
CNAG, Barcelona
Clinical collaborations
- University Medical Centre Utrecht
- Vall d’hebron Institute of Oncology
News
Daniel Navajas: 30 años dedicados a la mecanobiología
El pasado 5 de mayo se celebró el simposio Before Mechanobiology had a name (antes de que la mecanobiología tuviese un nombre), con motivo de la jubilación del Profesor Daniel … Read more
El investigador Pere Roca-Cusachs galardonado con una prestigiosa beca europea ERC Advanced Grant
El investigador del Instituto de Bioingeniería de Cataluña ha sido galardonado con una «ERC Advanced Grant», una de las financiaciones más prestigiosas y competitivas de la UE que permite a … Read more
Pere Roca contra progresión del cáncer en Big Vang
Pere Roca-Cusachs, investigador principal del IBEC, aparece en la sección del Big Vang de La Vanguardia por su investigación en mecanotransducción celular. La Vanguardia – Big Vang La Vanguardia (online)
Mecanotransducción en los medios
Investigadors de l’IBEC liderats per Pere Roca-Cusachs i Xavier Trepat apareixen als mitjans per un estudi que obre portes per a noves investigacions de teràpies i diagnòstics contra el càncer.
Mecanotransducción: aplicación de la mecánica nuclear para comprender la salud y la enfermedad
A study led by IBEC researchers, and published in Nature Cell Biology, shows that applying mechanical force to the cell nucleus affects the transport of proteins across the nuclear membrane. In doing so, this controls cellular processes and could play a key role in various diseases, such as cancer. This entails a novel approach to understanding aspects of cancer invasion and metastasis, opening the door to potential new techniques for diagnosis and therapy.
Investigadores descubren cómo las membranas celulares cambian la curvatura en función de las proteínas BAR
Un equipo de investigadores del IBEC y de la UPC, dirigido por Pere Roca-Cusachs y Marino Arroyo, estudia cómo las proteínas BAR, una familia de moléculas que se unen a las membranas celulares curvas, son capaces de remodelarlas. Los científicos publican en la revista Nature Communications, a través de experimentos y modelos, la dinámica de estos procesos de remodelación de membranas que ocurren tanto en células normales como en escenarios de enfermedades.
El «tira y afloja celular», protagonista también en los medios
Investigadores liderados por Pere Roca-Cusachs aparecen en distintos medios por su estudio publicado en la prestigiosa revista Nature Communications que descubre como la dinámica de fuerzas afecta a células, y a los tejidos vivos.
El tira y afloja celular, clave en la respuesta del organismo en procesos como el cáncer
Investigadores liderados por Pere Roca-Cusachs en el Instituto de Bioingeniería de Cataluña (IBEC) descubren como la dinámica de fuerzas afecta a células, y a los tejidos vivos. Los resultados ayudan a entender los procesos mecánicos cruciales que se llevan a cabo en diferentes enfermedades como el cáncer.
Premio para doctorado sobre mecanobiología en el IBEC
Roger Oria gana el XXIV Premio Claustro de Doctores de la Universidad de Barcelona (UB) por su tesis sobre mecanobiología, una disciplina emergente que puede contribuir a identificar nuevas herramientas para frenar patologías que se asocian con la rigidez de los tejidos, como por ejemplo, el cáncer.
Bioingeniería contra el cáncer en el «ABC»
Xavier Trepat y Pere Roca-Cusachs, líderes de grupo en el IBEC, aparecen en el ABC explicando su proyecto de investigación que llevarán a cabo gracias a la financiación de «la Caixa» como parte del programa «Health Research Call».
Jobs
Postdoctoral at the Cellular and Molecular Mechanobiology Research Group Unit
Ref: PR_PR// Deadline: 23/06/2023
Laboratory Technician at the Cellular and Molecular Mechanobiology Research Group (LT_PR)
Ref: LT_PR // Deadline: 21/05/2023
Research Assistant at the Cellular and Molecular Mechanobiology Research Group
Research Assistant/ Deadline: November 15th, 2022.
Research Assistant at the Cellular and Molecular Mechanobiology Research Group
Research Assistant / Deadline October 17th 2022