DONATE

Staff member

Núria Torras Andrés
Staff member publications

Fernánez-Majada, V., García-Díaz, María, Torras, N., Raghunath, M., Martínez, Elena, (2020). Editorial: When the shape does matter: Three-dimensional in vitro models of epithelial barriers Frontiers in Bioengineering and Biotechnology 8, 617361

Vila, A., Torras, N., Castaño, Albert G., García-Díaz, María, Comelles, Jordi, Pérez-Berezo, T., Corregidor, C., Castaño, O., Engel, E., Fernández-Majada, Vanesa, Martínez, Elena, (2020). Hydrogel co-networks of gelatine methacrylate and poly(ethylene glycol) diacrylate sustain 3D functional in vitro models of intestinal mucosa Biofabrication 12, 025008

Mounting evidence supports the importance of the intestinal epithelial barrier and its permeability both in physiological and pathological conditions. Conventional in vitro models to evaluate intestinal permeability rely on the formation of tightly packed epithelial monolayers grown on hard substrates. These two-dimensional (2D) models lack the cellular and mechanical components of the non-epithelial compartment of the intestinal barrier, the stroma, which are key contributors to the barrier permeability in vivo. Thus, advanced in vitro models approaching the in vivo tissue composition are fundamental to improve precision in drug absorption predictions, to provide a better understanding of the intestinal biology, and to faithfully represent related diseases. Here, we generate photo-crosslinked gelatine methacrylate (GelMA) - poly(ethylene glycol) diacrylate (PEGDA) hydrogel co-networks that provide the required mechanical and biochemical features to mimic both the epithelial and stromal compartments of the intestinal mucosa, i.e., they are soft, cell adhesive and cell-loading friendly, and suitable for long-term culturing. We show that fibroblasts can be embedded in the GelMA-PEGDA hydrogels while epithelial cells can grow on top to form a mature epithelial monolayer that exhibits barrier properties which closely mimic those of the intestinal barrier in vivo, as shown by the physiologically relevant transepithelial electrical resistance (TEER) and permeability values. The presence of fibroblasts in the artificial stroma compartment accelerates the formation of the epithelial monolayer and boosts the recovery of the epithelial integrity upon temporary barrier disruption, demonstrating that our system is capable of successfully reproducing the interaction between different cellular compartments. As such, our hydrogel co-networks offer a technologically simple yet sophisticated approach to produce functional three-dimensional (3D) in vitro models of epithelial barriers with epithelial and stromal cells arranged in a spatially relevant manner and near-physiological functionality.

JTD


Castaño, Albert G., García-Díaz, María, Torras, Núria, Altay, Gizem, Comelles, Jordi, Martínez, Elena, (2019). Dynamic photopolymerization produces complex microstructures on hydrogels in a moldless approach to generate a 3D intestinal tissue model Biofabrication 11, (2), 025007

Epithelial tissues contain three-dimensional (3D) complex microtopographies that are essential for proper performance. These microstructures provide cells with the physicochemical cues needed to guide their self-organization into functional tissue structures. However, most in vitro models do not implement these 3D architectural features. The main problem is the availability of simple fabrication techniques that can reproduce the complex geometries found in native tissues on the soft polymeric materials required as cell culture substrates. In this study reaction-diffusion mediated photolithography is used to fabricate 3D microstructures with complex geometries on poly(ethylene glycol)-based hydrogels in a single step and moldless approach. By controlling fabrication parameters such as the oxygen diffusion/depletion timescales, the distance to the light source and the exposure dose, the dimensions and geometry of the microstructures can be well-defined. In addition, copolymerization of poly(ethylene glycol) with acrylic acid improves control of the dynamic reaction-diffusion processes that govern the free-radical polymerization of highly-diluted polymeric solutions. Moreover, acrylic acid allows adjusting the density of cell adhesive ligands while preserving the mechanical properties of the hydrogels. The method proposed is a simple, single-step, and cost-effective strategy for producing models of intestinal epithelium that can be easily integrated into standard cell culture platforms.

JTD


Torras, N., García-Díaz, M., Fernández-Majada, V., Martínez, Elena, (2018). Mimicking epithelial tissues in three-dimensional cell culture models Frontiers in Bioengineering and Biotechnology 6, Article 197

Epithelial tissues are composed of layers of tightly connected cells shaped into complex three-dimensional (3D) structures such as cysts, tubules, or invaginations. These complex 3D structures are important for organ-specific functions and often create biochemical gradients that guide cell positioning and compartmentalization within the organ. One of the main functions of epithelia is to act as physical barriers that protect the underlying tissues from external insults. In vitro, epithelial barriers are usually mimicked by oversimplified models based on cell lines grown as monolayers on flat surfaces. While useful to answer certain questions, these models cannot fully capture the in vivo organ physiology and often yield poor predictions. In order to progress further in basic and translational research, disease modeling, drug discovery, and regenerative medicine, it is essential to advance the development of new in vitro predictive models of epithelial tissues that are capable of representing the in vivo-like structures and organ functionality more accurately. Here, we review current strategies for obtaining biomimetic systems in the form of advanced in vitro models that allow for more reliable and safer preclinical tests. The current state of the art and potential applications of self-organized cell-based systems, organ-on-a-chip devices that incorporate sensors and monitoring capabilities, as well as microfabrication techniques including bioprinting and photolithography, are discussed. These techniques could be combined to help provide highly predictive drug tests for patient-specific conditions in the near future.

JTD Keywords: 3D cell culture models, Biofabrication, Disease modeling, Drug screening, Epithelial barriers, Microengineered tissues, Organ-on-a-chip, Organoids


Agusil, Juan Pablo, Torras, Núria, Duch, Marta, Esteve, Jaume, Pérez-García, Lluïsa, Samitier, Josep, Plaza, José A., (2017). Highly anisotropic suspended planar-array chips with multidimensional sub-micrometric biomolecular patterns Advanced Functional Materials 27, 1605912

Suspended planar-array (SPA) chips embody millions of individual miniaturized arrays to work in extremely small volumes. Here, the basis of a robust methodology for the fabrication of SPA silicon chips with on-demand physical and chemical anisotropies is demonstrated. Specifically, physical traits are defined during the fabrication process with special focus on the aspect ratio, branching, faceting, and size gradient of the final chips. Additionally, the chemical attributes augment the functionality of the chips with the inclusion of complete coverage or patterns of selected biomolecules on the surface of the chips with contact printing techniques, offering an extremely high versatility, not only with the choice of the pattern shape and distribution but also in the choice of biomolecular inks to pattern. This approach increases the miniaturization of printed arrays in 3D structures by two orders of magnitude compared to those previously demonstrated. Finally, functional micrometric and sub-micrometric patterned features are demonstrated with an antibody binding assay with the recognition of the printed spots with labeled antibodies from solution. The selective addition of physical and chemical attributes on the suspended chips represents the basis for future biomedical assays performed within extremely small volumes.

JTD Keywords: Microcontact printing, Microparticles, Molecular multiplexing, Polymer pen lithography, Silicon chip technology


Torras, Núria, Agusil, Juan Pablo, Vázquez, Patricia, Duch, Marta, Hernández-Pinto, Alberto M., Samitier, Josep, de la Rosa, Enrique J., Esteve, Jaume, Suárez, Teresa, Pérez-García, Lluïsa, Plaza, José A., (2016). Suspended planar-array chips for molecular multiplexing at the microscale Advanced Materials 28, (7), 1449–1454

A novel suspended planar-array chips technology is described, which effectively allows molecular multiplexing using a single suspended chip to analyze extraordinarily small volumes. The suspended chips are fabricated by combining silicon-based technology and polymer-pen lithography, obtaining increased molecular pattern flexibility, and improving miniaturization and parallel production. The chip miniaturization is so dramatic that it permits the intracellular analysis of living cells.

JTD Keywords: Chip-in-a-cell, Suspended-arrays, Planar-arrays, Silicon chips, Single-cell analysis